SmartWire-DT
The System

SmartWire-DT®
The easy way to connect

EATON
Powering Business Worldwide
Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit.
- Cover or enclose neighbouring units that are live.
- Follow the engineering instructions (AWA/IL) of the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause restart.
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.
- Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 About this manual</td>
<td>3</td>
</tr>
<tr>
<td>0.1 Target group</td>
<td>3</td>
</tr>
<tr>
<td>0.2 List of revisions</td>
<td>3</td>
</tr>
<tr>
<td>0.3 Further manuals for this device</td>
<td>3</td>
</tr>
<tr>
<td>0.4 Writing conventions</td>
<td>4</td>
</tr>
<tr>
<td>0.4.1 Hazard warnings of material damages</td>
<td>4</td>
</tr>
<tr>
<td>0.4.2 Hazard warnings of personal injury</td>
<td>4</td>
</tr>
<tr>
<td>0.4.3 Tips</td>
<td>4</td>
</tr>
<tr>
<td>1 An overview of the SmartWire-DT system</td>
<td>5</td>
</tr>
<tr>
<td>1.1 What is SmartWire-DT?</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Use</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1 Proper use</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Improper use</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Surface mounting</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1 Coordinator</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2 SWD modules</td>
<td>10</td>
</tr>
<tr>
<td>1.3.3 SWD accessories</td>
<td>17</td>
</tr>
<tr>
<td>2 Engineering</td>
<td>19</td>
</tr>
<tr>
<td>2.1 SWD-Assist</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Planning and configuring hardware</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1 Structure of a SmartWire-DT network</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2 SWD card</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3 Cables</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4 Power supply</td>
<td>32</td>
</tr>
<tr>
<td>2.2.5 Fusing the supply cable</td>
<td>43</td>
</tr>
<tr>
<td>2.3 Planning and configuring software</td>
<td>47</td>
</tr>
<tr>
<td>2.3.1 How SmartWire-DT works</td>
<td>47</td>
</tr>
<tr>
<td>2.3.2 PLC configuration</td>
<td>48</td>
</tr>
<tr>
<td>2.3.3 Data profiles</td>
<td>50</td>
</tr>
<tr>
<td>2.3.4 Configuring a SmartWire-DT network’s parameters</td>
<td>51</td>
</tr>
<tr>
<td>2.3.5 I/O data</td>
<td>54</td>
</tr>
<tr>
<td>2.3.6 Diagnostics</td>
<td>55</td>
</tr>
<tr>
<td>2.3.7 SWD-Assist (Offline function)</td>
<td>56</td>
</tr>
</tbody>
</table>
Installation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1 Installation in control panels</td>
<td>59</td>
</tr>
<tr>
<td>3.1.2 Installing I/O modules with an IP67 degree of protection in distributed environments</td>
<td>59</td>
</tr>
<tr>
<td>3.1.3 Installing a cable adapter for switching from a ribbon cable to an 8-conductor round cable</td>
<td>65</td>
</tr>
</tbody>
</table>

Commissioning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Check installation</td>
<td>71</td>
</tr>
<tr>
<td>4.2 Switch on the power supply</td>
<td>71</td>
</tr>
<tr>
<td>4.3 Storing the target configuration</td>
<td>71</td>
</tr>
<tr>
<td>4.4 Checking the installed modules with the help of SWD-Assist</td>
<td>72</td>
</tr>
<tr>
<td>4.4.1 Target configuration view</td>
<td>75</td>
</tr>
<tr>
<td>4.5 Loading the project configuration</td>
<td>76</td>
</tr>
<tr>
<td>4.6 Status display, wiring test</td>
<td>77</td>
</tr>
<tr>
<td>4.6.1 Status display in SWD-Assist</td>
<td>78</td>
</tr>
<tr>
<td>4.6.2 Wiring test</td>
<td>79</td>
</tr>
</tbody>
</table>

Fault scenarios

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Discrepancies between the coordinator’s target configuration and the SmartWire-DT modules that are actually installed</td>
<td>86</td>
</tr>
<tr>
<td>5.1.1 The SWD status display flashes red</td>
<td>86</td>
</tr>
<tr>
<td>5.1.2 The SWD status display shows a continuous red light</td>
<td>86</td>
</tr>
<tr>
<td>5.2 Discrepancies between the coordinator’s project and target configurations</td>
<td>89</td>
</tr>
<tr>
<td>5.3 Data exchange between coordinator and operating system (for gateways only)</td>
<td>90</td>
</tr>
<tr>
<td>5.4 Gateway fault messages</td>
<td>91</td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>93</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>95</td>
</tr>
</tbody>
</table>
0.1 Target group

This manual is intended for engineers, electricians, and automation technicians. Electrical engineering and physics-related knowledge and skills will be required in order to be able to commission the corresponding devices. In addition, readers must be familiar with how to use the SmartWire-DT system.

0.2 List of revisions

The following are the main changes and amendments which have been made since the last edition (04/11) of this manual:

<table>
<thead>
<tr>
<th>Publication date</th>
<th>Page</th>
<th>Keyword</th>
<th>New</th>
<th>Modification</th>
<th>Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/15</td>
<td>All</td>
<td>Completely revised</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/15</td>
<td>29</td>
<td>Correction at 5-pole</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.3 Further manuals for this device

For more information on the subject of “SmartWire-DT”, please consult manual MN05006001Z-EN, “SmartWire-DT Modules”.

The aforementioned manual, as well as the manual you are reading right now, can also be downloaded free of charge from the Internet in PDF format.

http://www.eaton.eu → Customer support → Download Center – Documentation

Enter the manual number (“05006001” or “05006002”, for example) or “SWD” into the Quick Search text field.
0 About this manual
0.4 Writing conventions

0.4 Writing conventions

Symbols used in this manual have the following meanings:

▶ Indicates instructions to be followed.

0.4.1 Hazard warnings of material damages

NOTICE
Warns about the possibility of material damage.

0.4.2 Hazard warnings of personal injury

CAUTION
Warns of the possibility of hazardous situations that may possibly cause slight injury.

WARNING
 Warns of the possibility of hazardous situations that could result in serious injury or even death.

DANGER
Warns of hazardous situations that result in serious injury or death.

0.4.3 Tips

→ Indicates useful tips.

→ In order to make it easier to understand some of the figures included in this manual, the housing of the variable frequency drive, as well as other safety-relevant parts, have been left out. However, it is important to note that the variable frequency drive must always be operated with its housing placed properly, as well as with all required safety-relevant parts.

→ All the specifications in this manual refer to the hardware and software versions documented in it.
1 An overview of the SmartWire-DT system

1.1 What is SmartWire-DT?

SmartWire-DT (or SWD for short) is a communication system for industrial applications that can be used both in control panels to connect to switchgear and in distributed environments to connect to sensors and actuators.

SmartWire-DT is easy to set up and makes it possible to quickly connect all types of devices.

Typical devices include:

- Pilot devices
- Contactors and motor-protective circuit-breakers
- Circuit-breaker,
- Signal towers,
- Soft starters,
- Variable frequency drives,
- Digital and analog sensors.

SmartWire-DT is designed to replace conventional control wiring, eliminating the need to individually wire every single contact and/or indicator light and separately connect it to a PLC’s input/output modules. In order to achieve this, a communication module (referred to as a “module” within the SmartWire-DT network) designed to work with SmartWire-DT needs to be installed on the corresponding switchgear and connected to the system’s communication cable. Alternatively, there are also switchgear devices that already have a SmartWire-DT communication interface integrated into them.

In these two cases, a standard SmartWire-DT external device plug is used as a mechanical adapter that makes it possible to connect to the SmartWire-DT communication cable. SmartWire-DT features a simple and easy-to-use plug-in system that minimizes wiring errors and significantly reduces commissioning times. In addition, SmartWire-DT provides extended process data and detailed diagnostic information for connected switchgear during operation, making it possible to detect faults early on. This not only helps with preventive maintenance, but also helps minimize downtimes. Finally, SmartWire-DT networks are easy to expand during ongoing operation: All that is needed is to simply connect the new modules at the required point in the network.
1 An overview of the SmartWire-DT system

1.2 Use

1.2.1 Proper use

SmartWire-DT can be used both in control panels to connect switchgear and in the field to connect sensors and actuators.

Use in control panel.

SmartWire-DT can be used inside control panels in order to connect switchgear. When used like this, the system uses an 8-conductor ribbon cable for communication, with this cable including the necessary data and power supply wires.

Use in distributed environments.

SmartWire-DT can also be used to connect sensors and actuators in distributed environments (in the field). When used like this, the system uses interface modules with an IP67 degree of protection together with standardized M12 connection cables for a direct connection to digital and analog sensors and actuators. And because of its maximum length of 600 m, SmartWire-DT is ideal for use in applications that extend across large spaces, such as conveyor systems.

Flexible connection to controllers.

SmartWire-DT can be connected to higher-level operating systems in one of two ways: through gateways connected to common field bus systems such as PROFIBUS-DP, PROFINET, CANopen®, and Ethernet/IP, or directly by using automation systems with an integrated SmartWire-DT interface. Each SmartWire-DT network can accommodate up to 99 SmartWire-DT modules. And by allowing a large data volume of up to 1000 bytes in its cyclical data, SmartWire-DT also makes it possible to transfer data from complex switchgear units, including variable frequency drives and circuit-breakers.

Simple configuration.

SmartWire-DT networks are easy to configure: The required modules are easily connected to the corresponding SmartWire-DT cables using plugs. A configuration button can be pressed to assign addresses to all SmartWire-DT modules in the order in which they appear in the network. And the configuration will be automatically checked every time the system is restarted.

1.2.2 Improper use

SmartWire-DT is not designed for transmitting safety-relevant signals and must not be used as a replacement for controllers such as burner, crane, and two-hand safety controllers. Despite the above, SmartWire-DT can be used in applications with safety categories of up to 3, PL d as per EN ISO 13849-1 and SIL Cl2 as per EN 62061 if specific add-ons are incorporated. For more information, please consult manual MN05006001Z-EN, “SmartWire-DT modules”.
1.3 Surface mounting

A SWD network consists of the following components:

- A “coordinator”, which controls the network’s communication processes
- An SWD line, consisting of the connected SmartWire-DT modules
- Additional accessories, such as cables, plugs, and cable adapters

1.3.1 Coordinator

The communication in SmartWire-DT networks is controlled by what is referred to as a “SmartWire-DT coordinator”. This coordinator is responsible for the network’s configuration, for the exchange of data during operation, and for handling errors.

The coordinator’s specific tasks include:

- Checking the network configuration
- Detecting the SmartWire-DT modules on the network
- Assigning addresses to all the modules on the network
- Initializing the modules and configuring their parameters
- Controlling cyclical and acyclical data transfers between the coordinator and the modules
- Providing diagnostic information concerning the SmartWire-DT modules’ and the network’s statuses

Coordinators are available in various designs and with various functions.

- **When they are part of a gateway**, they transfer data from the corresponding SmartWire-DT network to the higher-level PLC via the gateway’s field bus interface. This makes it possible to use SmartWire-DT with virtually all available PLC systems.

- **When they are directly integrated into PLCs**, they make it possible to connect SmartWire-DT modules directly. Examples include EASY80x-DC-SWD control units, XC-152-E... controllers, and visualization devices with an integrated PLC such as XV-102-E... and XV-152-E... units.
1 An overview of the SmartWire-DT system
1.3 Surface mounting

1.3.1.1 Field bus gateways

Field bus gateways can be used to connect to PLC systems from virtually any manufacturer. When used in a SmartWire-DT communication system, these gateways not only constitute the link to connected switchgear, but also transfer data from the SmartWire-DT network to the higher-level PLC via the corresponding field bus.

The following gateways can be used:

<table>
<thead>
<tr>
<th>Gateway (part no.)</th>
<th>For connecting to the following field bus system(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU5C-SWD-DP</td>
<td>PROFIBUS-DP</td>
</tr>
<tr>
<td>EU5C-SWD-CAN</td>
<td>CANopen®</td>
</tr>
<tr>
<td>EU5C-SWD-EIP-MODTCP</td>
<td>Ethernet/IP and Modbus-TCP</td>
</tr>
<tr>
<td>EU5C-SWD-PROFINET</td>
<td>Profinet</td>
</tr>
<tr>
<td>EU5C-SWD-POWERLINK</td>
<td>Powerlink</td>
</tr>
<tr>
<td>EU5C-SWD-ETHERCAT</td>
<td>EtherCAT</td>
</tr>
</tbody>
</table>

1.3.1.2 Devices with integrated coordinator

Following are a few of the devices that feature an integrated coordinator:

easy 802/806

By using easy802 and/or easy806 control relays, you can take advantage of the benefits provided by SmartWire-DT for simple control tasks. And by connecting more complex modules, such as PKE electronic motor starters, you can tap into new possibilities for your application.
1 An overview of the SmartWire-DT system

1.3 Surface mounting

XC152

In addition to an integrated SmartWire-DT interface, the XC152 compact PLC features communication options such as Ethernet, CANopen®, and PROFIBUS-DP. Moreover, the unit has an integrated web server that makes it possible to visualize control data in a web browser.

![XC152](image)

Figure 2: XC152

XV100

The HMIs (Human Machine Interfaces) in the XV100/XV150 model series are also available with PLC functionality (HMI PLCs). With an additionally integrated SmartWire-DT interface, they make it possible to directly connect all SmartWire-DT modules – including digital and analog inputs and outputs and switchgear – via field buses. This, in turn, makes it possible to implement extremely lean automation architectures.

![XV100](image)

Figure 3: XV100
1 An overview of the SmartWire-DT system
1.3 Surface mounting

1.3.2 SWD modules

In a SmartWire-DT network, SmartWire-DT modules exchange data with the SmartWire-DT coordinator. These SmartWire-DT modules can take one of the following forms:

- Interface modules for switchgear. These function modules can be used to connect switchgear, such as pilot devices and contactors, to SmartWire-DT.
- Switchgear with an integrated SmartWire-DT communication interface
- Input/output modules, with an IP20 or IP67 degree of protection, for connecting digital and analog input and output signals.

SmartWire-DT modules will have variable data profiles and specific parameters that will depend on the type of device being used. The following list provides an overview of the SmartWire-DT modules that are currently available:

Function module for M22… pilot devices

M22-SWD function elements can be used to connect M22 pilot devices. These elements are available both in front mount versions for control panels and in versions for use in surface mounting enclosures outside control panels. Moreover, function elements with a single function, such as pushbuttons and indicator lights, are available, as are complex function elements such as illuminated double actuator pushbuttons. Potentiometers with a SmartWire-DT interface are also available.
1 An overview of the SmartWire-DT system
1.3 Surface mounting

Function module for DIL-SWD... contactors and PKZ motor starters

DIL-SWD... SmartWire-DT contactor modules can be combined with contactors rated for up to 18 kW. When this combination is used, the 8-conductor SmartWire-DT ribbon cable will not only supply the device supply voltage for the contactor modules, but also the 24 V DC control voltage for the contactors.

If used together with PKZ motor starters, information on the trip block's auxiliary contact will also be transmitted directly.

Function module for PKE electronic motor starters

SmartWire-DT module PKE-SWD-32 can be used to connect a motor starter based on a PKE electronic motor-protective circuit-breaker to a SmartWire-DT communication system. In addition to contactor energizing and a contactor position feedback signal, the module will also transmit the trip block's status and analog values such as current, making it possible to detect and prevent overload situations in advance.

Function module for PKE motor-protective circuit-breakers

PKE-SWD SmartWire-DT motor-protective circuit-breaker modules can be plugged into electronic PKE motor-protective circuit-breakers in order to connect the latter to SmartWire-DT systems. This makes it possible to send commands from a coordinator to the motor-protective circuit-breakers (in order to remotely switch them off, for example). In addition, the modules make it possible to query process data, such as current motor currents and thermal motor models.
Function module for PKE-CP electronic circuit-breakers

PKE-SWD-CP SmartWire-DT modules are designed for use with PKE65…CP electronic circuit-breakers. They deliver data regarding all phase currents and the overload unit’s state, as well as specific circuit-breaker status and overload messages. In addition, they make remote tripping possible.

Function module for NZM circuit-breakers

SmartWire-DT module NZM-XSWD-704 can be connected to NZM2, NZM3, and NZM4 circuit-breakers with an electronic control unit. It delivers specific circuit-breaker process and diagnostic data such as currents, overload warnings, diagnostic information, and information on the circuit-breaker model that is installed. In addition, the module features inputs and outputs that can be used to connect an optional remote operator.

![SmartWire-DT connection to NZM circuit-breakers](image)
Function module for DA1, DC1, DE1 variable frequency drives/variable speed starters

DX-NET-SWD3 SmartWire-DT modules can be used to connect DA1 and DC1 variable frequency drives and DE1 variable speed starters to SmartWire-DT systems. When this option is used, all functions and settings will be available for processing in the PLC.

Figure 7: SmartWire-DT connection to variable frequency drives and variable speed starters
1 An overview of the SmartWire-DT system
1.3 Surface mounting

Soft starters DS7-....-D

DS7-....-D soft starters are designed in such a way that they can be directly connected to SmartWire-DT systems. This means, for instance, that all of the soft starters’ functions can be controlled via SmartWire-DT, and that the communication system can also be used to read all of the soft starters’ parameters and write to them.

![DS7 soft starters with integrated SmartWire-DT interface](image)

Adapters for SL4 and SL7 signal towers

Adapters SL4-SWD and SL7-SWD can be used to connect SL4 and SL7 signal towers to SmartWire-DT systems directly. Up to five light elements can be driven this way, significantly reducing the wiring involved.
Fuse auxiliary contact

Auxiliary contact MCB-HK-SWD can be used to monitor miniature circuit-breakers and residual current circuit-breakers. It delivers information on ON/OFF and tripped states and eliminates the need for conventional manual wiring.

SmartWire-DT I/O modules with an IP20 degree of protection

SmartWire-DT I/O modules can be used to connect conventional sensors and actuators to SmartWire-DT communication systems. An example is the auxiliary contacts in additional switchgear that do not have a direct connection to SmartWire-DT. These I/O modules are placed in the immediate vicinity of the corresponding sensors/actuators, significantly decreasing the amount of wiring work involved.

Modules with the following characteristics are available:

- With digital transistor or relay inputs/outputs
- With analog inputs and outputs
- For measuring temperatures
SmartWire-DT I/O modules with an IP67 degree of protection

SmartWire-DT I/O modules with an IP67 degree of protection can also be used to connect sensors and actuators directly in the field. Modules for 1, 2, or 4 sensors/actuators are available. A 5-conductor round cable with an M12 connector is used as the connecting cable for SmartWire-DT communication in this case. Likewise, the sensors and actuators are also connected using a standardized M12 interface.

Modules with the following characteristics are available:

- With digital inputs or configurable inputs/outputs
- With analog inputs and outputs
- For measuring temperatures
- With a counter function (e.g., incremental encoders)

Universal modules

Universal modules can be used as placeholders for planned modules in a system. Their goal is to make it possible to configure and program a full system or system expansion in a PLC without having to physically install the required hardware right away. This way, when the planned hardware is installed later on, the universal module(s) can simply be replaced with the corresponding planned module(s).

Universal modules are available both for applications in control panels and in distributed environments.
1.3.3 SWD accessories

SmartWire-DT accessories are passive SmartWire-DT components that do not exchange any data, but that are necessary in order for a SmartWire-DT network to be able to run properly. These accessories include:

- Power feeder modules used to supply additional power
- Cable adapters for switching from a ribbon cable to a round cable
- Connectors for connecting SmartWire-DT cables

SWD cables

SmartWire-DT cables are used to connect the coordinator in a SmartWire-DT system to the SmartWire-DT modules on the network. The actual type of cable that needs to be used will depend on the application in question:

- 8-conductor SWD4-...LF8... ribbon cables for use inside control panels
- 8-conductor SWD4-...LR8... round cables for connections between control panels or external surface mounting enclosures for pilot devices
- 5-conductor SWD4-...LR5... round cables for connecting SmartWire-DT modules in the field (i.e., with an IP 67 degree of protection)

Depending on the specific type of SmartWire-DT cable being used, the cable may not only include the wires required for communication, but also control wires for assigning addresses to the SmartWire-DT modules, as well as power supply wires for these modules. The ribbon cable used inside control panels will also carry an additional 24 V DC power supply for any switchgear that will be connected (e.g., contactors).
1 An overview of the SmartWire-DT system
1.3 Surface mounting
2 Engineering

This chapter contains information on how to plan and configure a SmartWire-DT network both in terms of hardware and software.

The most important steps involved in planning and configuring hardware are:

- Creating a SmartWire-DT network consisting of:
 - A coordinator
 - SmartWire-DT modules
 - SWD accessories.
- Selecting communication cables and their cable lengths
- Sizing the power supply

The most important steps involved in planning and configuring software are:

- Defining all data and access to process data (cyclical data, acyclical data, data profiles)
- Configuring the modules’ parameters
- Evaluating diagnostic messages

2.1 SWD-Assist

The SWD-Assist program can be extremely useful when planning and configuring a SmartWire-DT network in terms of hardware and software. It will assist you in selecting and configuring the various SmartWire-DT components and the SmartWire-DT network.

SWD-Assist runs on the following operating systems: Windows 2000 (SP 4), Windows XP, Windows Vista (32 Bit), Windows 7, and Windows 8.

The SWD-Assist program can be downloaded free of charge from the Internet at: They can be quickly located at http://www.eaton.eu → Customer Support → Download Center – Documentation by entering “SWD-Assist” as a search term into the Quick Search field.
2 Engineering
2.2 Planning and configuring hardware

2.2 Planning and configuring hardware

2.2.1 Structure of a SmartWire-DT network

A SmartWire-DT network consists of the following components:

- A SmartWire-DT coordinator
- SmartWire-DT modules
- SmartWire-DT cables (ribbon and/or round cables) with connectors, cable adapters, control panel cable glands, and power feeder modules
- A bus terminator

The coordinator will either be part of a controller (control relay, PLC, or HMI with integrated PLC) or part of a gateway connected to a PLC via a field bus.

Up to 99 modules can be connected to a single SmartWire-DT network. The maximum cyclical data volume is 1,000 bytes. However, the maximum number of modules that can be connected and the maximum data volume that can be transmitted may be lower depending on the coordinator being used and/or on the total data volume of all the SmartWire-DT modules on the network.

→ Table 2 lists the limits for the coordinators available as of this writing. These specifications are also stored in the SWD-Assist planning program. By selecting the coordinator you want, you will be able to identify which network configurations will work and which ones will not early on in the process.

For more information on field bus-specific characteristics, please consult the product documentation for the coordinator you want to use.
2 Engineering

2.2 Planning and configuring hardware

A SmartWire-DT network can have a total length of up to 600 m. This makes it possible to use SmartWire-DT in spatially distributed applications as well.

Components with different degrees of protection are available for use in control panels and in the field. You can switch from IP20 applications (control panels) to IP67 applications (distributed environments) and back as necessary.

Table 2: Maximum coordinator data volumes

<table>
<thead>
<tr>
<th>Gateway</th>
<th>Field bus</th>
<th>Input data</th>
<th>Output data</th>
<th>Sum input data + output data</th>
<th>Max. number of SWD stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU5C-SWD-DP</td>
<td>PROFIBUS-DP</td>
<td>240 Byte</td>
<td>240 Byte</td>
<td>480 Byte</td>
<td>58</td>
</tr>
<tr>
<td>EU5C-SWD-CAN</td>
<td>CANopen</td>
<td>128 Byte</td>
<td>128 Byte</td>
<td>256 Byte</td>
<td>99</td>
</tr>
<tr>
<td>EU5C-SWD-EIP-MODTCP</td>
<td>Ethernet/IP</td>
<td>500 Byte</td>
<td>496 Byte</td>
<td>996 Byte</td>
<td>99</td>
</tr>
<tr>
<td>EU5C-SWD-PROFINET</td>
<td>Profinet</td>
<td>800 Byte</td>
<td>642 Byte</td>
<td>1000 Byte</td>
<td>99</td>
</tr>
<tr>
<td>EU5C-SWD-POWERLINK</td>
<td>Powerlink</td>
<td>800 Byte</td>
<td>642 Byte</td>
<td>1000 Byte</td>
<td>99</td>
</tr>
<tr>
<td>EU5C-SWD-ETHERCAT</td>
<td>EtherCAT</td>
<td>800 Byte</td>
<td>642 Byte</td>
<td>1000 Byte</td>
<td>99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control relays/PLCs/ human-machine interface</th>
<th>Input data</th>
<th>Output data</th>
<th>Sum input data + output data</th>
<th>Max. number of SWD stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASY80x-DC-SWD</td>
<td>83 digital I</td>
<td>83 digital Q</td>
<td>max. 128 marker byte /128 marker word</td>
<td>99</td>
</tr>
<tr>
<td>XV-102, XV-152</td>
<td>800 Byte</td>
<td>642 Byte</td>
<td>1000 Byte</td>
<td>99</td>
</tr>
<tr>
<td>XC-152</td>
<td>800 Byte</td>
<td>642 Byte</td>
<td>1000 Byte</td>
<td>99</td>
</tr>
</tbody>
</table>
2 Engineering
2.2 Planning and configuring hardware

Figure 14: Flexible network architecture with IP20 (control panels) and IP67 (field)

1. PLC with field bus
2. Coordinator as field bus slave (gateway)
3. SmartWire-DT ribbon cable with IP20 degree of protection inside control panel
4. SmartWire-DT module inside control panel
5. Power feeder module in control panel
6. Ribbon cable – round cable control panel cable gland
7. SmartWire-DT module with IP67 degree of protection with sensor(s)/actuator(s)
8. Round cable with IP67 degree of protection
9. Power feeder module in distributed environment
10. Ribbon cable – round cable control panel cable gland
11. Power feeder module in control panel
12. Bus terminator for control panel

SWD lines that are relatively long or have relatively high levels of power consumption will suffer a voltage drop that will make it necessary to use additional power supplies. This is where power feeder modules, which are available in a variety of designs, come in.

For details, please refer to Section 2.2.4, “Power supply“, page 32.
The SWD-Assist planning program provides additional information.

A bus terminator needs to be installed at the end of a SmartWire-DT network. This terminator ensures that data will be transmitted correctly and that the cable is properly terminated so that the corresponding EMC requirements are met.
2.2.2 SWD card

The SmartWire-DT modules for a network need to be selected and used based on the required functions and the location where the modules will be used.

SmartWire-DT modules inside control panels

Inside control panels (IP20), SmartWire-DT modules are used with a connection to the ribbon cable. Within this context, it is necessary to draw a distinction between modules used in combination with standard switchgear (e.g., M22 pilot devices with an M22-SWD communication module) and modules with integrated SmartWire-DT functionality (e.g., DS7 soft starters). Regardless of the type used, the devices inside control panels are always connected using an SWD4-8SF2-5 external device plug.

SmartWire-DT modules for connecting sensors/actuators in the field

Outside control panels, input/output modules with an IP67 degree of protection are used to connect sensors and actuators. These sensors and actuators are connected using standardized cables with M12 plug connectors (A-keyed) that carry not only a supply voltage, but also the I/O signals for up to two sensors/actuators. M12 plug connectors are used to connect the modules to the SmartWire-DT system as well.

Figure 15: Example: M22-SWD communication module (left); integrated SmartWire-DT solution in DS7 soft starter (right)

Figure 16: Input/output module with IP67 degree of protection
SmartWire-DT modules for use in surface mounting enclosures

M22-SWD...C... base fixing pilot devices are used together with M22-SWD-I...-LP01 cards and M22-I... surface mounting enclosures to put remote control stations together.

In this type of assembly, the card is first installed inside the surface mounting enclosure. The number of pilot devices that can be installed will vary depending on the card model being used, with six being the maximum. Regardless of this number, the card will have eight push-in terminals that can be used to connect to the SmartWire-DT communication cable.

The connection to the SWD4-...LR8... 8-conductor round cable can be established in a couple of different ways:

- The SWD4-...LR8... 8-conductor round cable can be connected directly to the push-in terminals on the M22-SWD-I... card
- SWD4-SFL8-20 or SWD4-SML8-20 control panel cable glands can be used. In this case, the connection can be implemented as a plug-in connection by using SWD4-SF8-67 or SWD4-SM8-67 plug connectors on the round cable

Once this step is complete, the pilot devices can be installed on the card.

An M22-SWD-SEL8-10 jumper must be installed in unused slots, as it will not be possible to configure downstream SmartWire-DT modules otherwise.
The cards include a bus terminator for the SmartWire-DT network that can be switched on and off. If the surface mounting enclosure is the last module on the network, the bus terminator needs to be switched on.

Universal modules

A special case is the use of universal modules, which can be used as placeholders when, while planning and configuring your system, you already know that you will need to install additional switchgear at a later point in time after placing the system into operation. In this case, you can plan and configure the device and program the function in the user program during the software planning and configuration stage. Then, all that is necessary is to install a universal module (M22-SWD-NOP, M22-SWD-NOPC, EU1M-SWD-NOP) instead of the intended switchgear. Once the function needs to be added, all that is needed is to replace the universal module with the corresponding planned switching device.

Specific diagnostic information lets the controller "know" whether the universal module or the planned switching device is installed, enabling it to execute the control program accordingly. This function can be enabled using the module’s parameters.

For additional planning and configuration details for SmartWire-DT modules, please consult the corresponding manuals.

2.2.3 Cables

Both ribbon cables and round cables are used to connect SmartWire-DT modules. Depending on the application in question, you can switch between a ribbon cable and a round cable multiple times if necessary by using appropriate cable adapters / control panel cable glands.

Make sure to only use genuine SmartWire-DT cables, as this is the only way to guarantee that the cable parameter requirements needed for error-free communication will be met.

The following cables are available:

- 8-conductor SWD4-...LF8... ribbon cables for use inside control panels
- 5-conductor SWD4-...LR5-... round cables for use in the field
- 8-conductor SWD4-...LR8-... round cables for connecting control panels or for connecting external pilot devices in surface mounting enclosures
2 Engineering
2.2 Planning and configuring hardware

2.2.3.1 Cable length

A SmartWire-DT network can have a length of up to 600 m. The actual maximum length will depend on the baud rate and cable type (ribbon cable or round cable) being used.

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>Ribbon cable</th>
<th>Round cable (5-pole)</th>
<th>Round cable (8-pole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 KB</td>
<td>600 m</td>
<td>600 m</td>
<td>600 m</td>
</tr>
<tr>
<td>250 KB</td>
<td>600 m</td>
<td>600 m</td>
<td>600 m</td>
</tr>
</tbody>
</table>

2.2.3.2 Flat band conductor

Inside control panels, SmartWire-DT uses an 8-conductor ribbon cable. In addition to communication wires, this ribbon cable carries the power supply for the SmartWire-DT modules and the switchgear, as well as control wires for assigning addresses.

<table>
<thead>
<tr>
<th>Flat band conductor</th>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24 V DC</td>
<td>Contactor control voltage</td>
<td></td>
</tr>
<tr>
<td>Chassis ground</td>
<td>Contactor control voltage</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>for device supply voltage and data cable</td>
<td></td>
</tr>
<tr>
<td>Data B</td>
<td>Data cable B</td>
<td></td>
</tr>
<tr>
<td>Data A</td>
<td>Data cable A</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>for device supply voltage and data (Data A, Data B)</td>
<td></td>
</tr>
<tr>
<td>SEL</td>
<td>Select cable for automatic addressing of the SWD slaves</td>
<td></td>
</tr>
<tr>
<td>+15 V DC</td>
<td>Device supply voltage</td>
<td></td>
</tr>
</tbody>
</table>

The ribbon cable has a maximum ampacity of 3 A (CE) or 2 A (UL) and a dielectric strength of 600 V (CE, UL). This means that it can be routed together with motor current cables in the same cable duct. At its beginning and end, the cable has 8-pin SWD4-8MF2 ribbon connectors. A SmartWire-DT network always starts with the ribbon cable from the coordinator. In contrast, a variety of SmartWire-DT elements can be connected at the end of the ribbon cable:

- SWD4-8SFF2-5 coupling for flexibly connecting to another ribbon cable segment
- Cable adapter / control panel cable gland for switching from the ribbon cable to a round cable (5-conductor or 8-conductor)
- EU5C-SWD-PF... power feeder module for feeding additional supply voltage
- SWD4-RC8-10 bus terminator for the ribbon cable
2 Engineering

2.2 Planning and configuring hardware

Ribbon cables are available in various lengths and configurations:

<table>
<thead>
<tr>
<th>Flat band conductor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWD4-10LF8-24</td>
<td>100-m long roll for making custom SmartWire-DT cables</td>
</tr>
<tr>
<td>SWD4-3LF8-24-2S</td>
<td>Prefabricated cable (with a length of 3, 5, or 10 m) with two 8-pin SWD4-8MF2 ribbon connectors</td>
</tr>
<tr>
<td>SWD4-5LF8-24-2S</td>
<td></td>
</tr>
<tr>
<td>SWD4-10LF8-24-2S</td>
<td></td>
</tr>
</tbody>
</table>

All SmartWire-DT modules inside a control panel need to be connected to the ribbon cable using an 8-pin SWD4-8SF2-5 external device plug.

Figure 18: External device plug SWD4-8SF2-5

2.2.3.3 5 pole round cable

5-conductor round cables with M12 plug connectors (A-keyed) are used to connect SmartWire-DT modules in the field in order to enable data to be transferred. Since all the coordinators available as of this writing need to be connected to the 8-conductor ribbon cable instead, it is first necessary to switch from the ribbon cable to the round cable using an SWD4-SFL8-12 control panel cable gland. This cable gland can also be used to feed a new supply voltage for the SmartWire-DT modules in the field and for the corresponding sensors and actuators.

For more information, please refer to Section 2.2.4.2, “Power supply in distributed environments”, page 36.

Various SmartWire-DT elements can be connected at the end of the round cable:

- SWD4-SML8-12 control panel cable gland for switching from the round cable to a ribbon cable
- SWD4-RC5-10 bus terminator for the round cable
2 Engineering
2.2 Planning and configuring hardware

The range of round cables includes the following versions:

SmartWire-DT cables for connecting to SmartWire-DT

The SmartWire-DT round cable is used as a connecting cable for connecting to the SmartWire-DT communication system. Make sure to use this cable exclusively, as this is the only way to guarantee error-free transmissions up to the maximum possible SmartWire-DT network length of 600 m.

Prefabricated cables with two M12 plug connectors (socket, plug)

Table 5: Prefabircated SmartWire-DT cables for directly connecting two SmartWire-DT modules with an IP67 degree of protection

<table>
<thead>
<tr>
<th>Cable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWD4-M1LR5-2S</td>
<td>SWD cable, 5-pole, 0.1 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-M3LR5-2S</td>
<td>SWD cable, 5-pole, 0.3 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-M6LR5-2S</td>
<td>SWD cable, 5-pole, 0.6 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-1LR5-2S</td>
<td>SWD cable, 5-pole, 1.0 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-1M5LR5-2S</td>
<td>SWD cable, 5-pole, 1.5 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-2LR5-2S</td>
<td>SWD cable, 5-pole, 2.0 m, M12-M/M12-F</td>
</tr>
</tbody>
</table>

Figure 19: Change from round cable to ribbon cable

1. Control panel 1
2. Control panel 2
3. Flat band conductor
4. M12 round cable
5. SWD card
6. Bus terminator in the field
7. Ribbon cable – round cable control panel cable gland
8. Round cable – ribbon cable control panel cable gland
2 Engineering

2.2 Planning and configuring hardware

I/O cables for connecting sensors/actuators

5-conductor I/O cables with two M12 plug connectors (socket, plug)

Prefabricated round cables with two M12 plug connectors (A-keyed) are used to connect to sensors/actuators with an M12 connector.

<table>
<thead>
<tr>
<th>Cable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWD4-xxx-LR5</td>
<td>SWD cable, 5-pole (xxx = from .. up to)</td>
</tr>
<tr>
<td>SWD4-SF5-67</td>
<td>M12 socket, 5 pin</td>
</tr>
<tr>
<td>SWD4-SM5-67</td>
<td>M12 plug, 5-pole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWD4-M3LR5-2S</td>
<td>SWD cable, 5-pole, 0.3 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-M6LR5-2S</td>
<td>SWD cable, 5-pole, 0.6 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-1LR5-4S</td>
<td>SWD cable, 5-pole, 1.0 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-1M5LR5-2S</td>
<td>SWD cable, 5-pole, 1.5 m, M12-M/M12-F</td>
</tr>
<tr>
<td>SWD4-2LR5-2S</td>
<td>SWD cable, 5-pole, 2.0 m, M12-M/M12-F</td>
</tr>
</tbody>
</table>

5-conductor cables with one single M12 plug

These prefabricated cables are designed with a single M12 plug for connecting to an I/O module with an IP67 degree of protection on one end and with individual wires for directly connecting sensors/actuators on the other.

<table>
<thead>
<tr>
<th>Cable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWD4-M3LR5-S</td>
<td>SWD-I/O cable, 5-pole, 0.3 m, M12-M</td>
</tr>
<tr>
<td>SWD4-M6LR5-S</td>
<td>SWD-I/O cable, 5-pole, 0.6 m, M12-M</td>
</tr>
<tr>
<td>SWD4-1LR5-S</td>
<td>SWD-I/O cable, 5-pole, 1.0 m, M12-M</td>
</tr>
<tr>
<td>SWD4-2LR5-S</td>
<td>SWD-I/O cable, 5-pole, 2.0 m, M12-M</td>
</tr>
</tbody>
</table>
2 Engineering
2.2 Planning and configuring hardware

Splitters for connecting two sensors/actuators to a single M12 I/O socket

These splitters are available with an M12 or M8 connector on the sensor/actuator connection side.

Table 9: Splitter

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWD4-SP-3084</td>
<td>M12 plug, 4-pole to 2 x M8 socket, 3-pole</td>
</tr>
<tr>
<td>SWD4-SP-4082</td>
<td>M12 plug, 4-pole to 2 x M8 socket, 4-pole, Pin 2</td>
</tr>
<tr>
<td>SWD4-SP-4084</td>
<td>M12 plug, 4-pole to 2 x M8 socket, 4-pole, Pin 4</td>
</tr>
<tr>
<td>SWD4-SP-4122</td>
<td>M12 plug, 4-pole to 2 x M12 socket, 4-pole, Pin 2</td>
</tr>
<tr>
<td>SWD4-SP-4124</td>
<td>M12 plug, 4-pole to 2 x M12 socket, 4-pole, Pin 4</td>
</tr>
</tbody>
</table>

2.2.3.4 8 pole round cable

8-conductor SWD4-...LR8... round cables are used to connect control panels, as well as to connect M22.SWD...C.. external pilot devices in IP67 surface mounting enclosures. They are available in lengths of 50 and 250 meters.

<table>
<thead>
<tr>
<th>Cable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWD4-50LR8-24</td>
<td>Round cable, 8 pole, 50 m ring</td>
</tr>
<tr>
<td>SWD4-250LR8-24</td>
<td>Round cable, 8 pole, 250 m ring</td>
</tr>
</tbody>
</table>

Cable adapters/control panel cable glands are used to switch from a ribbon cable to an 8-conductor round cable and back. There are several options available for this purpose:

SWD4-SFL8-20 control panel cable gland for switching from a ribbon cable to an 8-pin round plug connector

SWD4-SFL8-20 control panel cable glands are meant to be installed on the sides of control panels in order to provide a plug-in connection for 8-conductor SmartWire-DT round cables. These adapters can also be used to feed a new 24-V supply voltage, although this will only be necessary in cases in which the round cable is used to connect to another control panel in which contactors are energized via SmartWire-DT. In other words, it is not necessary to feed this new supply voltage when using the cable to operate pilot devices in surface mounting enclosures.

SWD4-SML8-20 control panel cable gland for switching from 8-conductor round plug connectors to ribbon cables

SWD4-SML8-20 control panel cable glands are meant to be installed on the sides of control panels and make it possible to switch from an 8-conductor round cable with plug connectors to a ribbon cable.
2.2 Planning and configuring hardware

Figure 20: Round socket control panel cable gland in control panel 1, round plug control panel cable gland in control panel 2

1. Control panel 1
2. Control panel 2
3. Flat band conductor
4. Round cable
5. Switch cabinet bushing with an integrated round socket
6. Switch cabinet bushing an integrated round plug

SWD4-8FRF-10 cable adapter for switching from a ribbon cable to a round cable and vice versa

SWD4-8FRF-10 cable adapters are designed to be mounted on DIN-rails or, by using ZB4-101-GF1 device feet available as accessories, on mounting plates. These adapters feature an 8-pin numbered and color-coded spring-cage terminal for connecting the round cable, with the colors corresponding to the 8-conductor round cable’s coding. The 24-V voltage cannot be fed separately when using these adapters.

Figure 21: Blade terminal/round cable cable adapter

These adapters can also be used in "mixed" configurations, i.e., with a plug-in connection on one side and a permanent connection on the other.
2 Engineering
2.2 Planning and configuring hardware

![Figure 22: Example showing a system that switches from a ribbon cable to a round cable](image)

- Control panel 1 with SWD4-SFL8-20 control panel cable gland
- Control panel 2 SWD4-8RF-10 with cable adapter

2.2.4 Power supply

Multi-conductor SmartWire-DT cables also carry the supply voltage for the SmartWire-DT modules, for any connected switchgear, and for sensors and actuators in the field. This means that an important criterion when planning and configuring hardware is the SmartWire-DT network’s current draw, as well as the voltage drop on SmartWire-DT cables that needs to be considered based on the cables’ length. Accordingly, the configuration you end up using may make it necessary to feed a new supply voltage at certain points.

Another reason for feeding a new supply voltage is when switching from cable type to cable type: while an 8-conductor ribbon cable is used in control panels, a 5-conductor round cable is used in the field. Cable adapters/control panel cable glands are used to switch from a ribbon cable to a round cable and vice versa, and, as a general rule, can be used to feed a new supply voltage for the SmartWire-DT modules and any connected switchgear.

There are also control panel cable glands with a separate voltage feed for 8-conductor round cables that can be used to connect control panels or external pilot devices in IP67 surface mounting enclosures.
2 Engineering

2.2 Planning and configuring hardware

Figure 23: Example showing multiple points at which voltage is supplied

1. PLC
2. SWD gateway
3. Power feeder module
4. Ribbon cable – round cable control panel cable gland
5. Power feeder module with IP67 degree of protection
6. Round cable – ribbon cable control panel cable gland
7. Power feeder module
2 Engineering
2.2 Planning and configuring hardware

2.2.4.1 Power supply inside control panels

The starting point of a SmartWire-DT network is always a device functioning as a coordinator. This device is where the SmartWire-DT network starts, and will have a connection to the 8-conductor ribbon cable used inside the control panel in order to connect SmartWire-DT modules. In addition to communication and control wires, this ribbon cable also carries the supply voltages for connected SmartWire-DT modules (15 V DC) and optionally used switchgear (24 V DC).

These two supply voltages are supplied through the coordinator via terminals U_{POW} and U_{AUX}.

![Figure 24: Power supplied from gateway](image)

Voltage U_{POW}

24-V voltage input U_{POW} powers the coordinator itself first. In addition, the coordinator contains a power supply that provides the 15 V DC voltage required to power SmartWire-DT modules inside the control panel. Within this context, the maximum current load is 0.7 A. This voltage is not galvanically isolated from U_{POW}.

If the current required by the connected SmartWire-DT modules exceeds the maximum supply limit of 0.7 A, an EU5C-SWD-PF2-1 power feeder module needs to be included in the configuration. The SWD-Assist planning program has the current consumption specifications for all SmartWire-DT modules. During planning, it will automatically calculate and display the corresponding system’s current consumption.

Voltage U_{AUX}

The 24-V U_{AUX} voltage input is meant to be used exclusively to power 24 V DC contactors. Its maximum current carrying capacity is 3 A (CE) or 2 A (UL).
2 Engineering
2.2 Planning and configuring hardware

If the current required by the connected switchgear exceeds the maximum supply limit of 3 A or 2 A, an EU5C-SWD-PF1-1 or EU5C-SWD-PF2-1 power feeder module needs to be included in the configuration.

If modules used to energize contactors are used, the SWD-Assist planning program will ask for the contactor model being used so that it can automatically calculate the corresponding current and, if necessary, recommend including an additional power feeder module.

Power supply EU5C-SWD-PF2-1

EU5C-SWD-PF2-1 power feeder modules contain a power supply that can be used to feed a new 15 V DC voltage to power the SmartWire-DT modules inside a control panel. These modules segment the power supply so that the incoming 15-V supply voltage from the ribbon cable is stopped and a new voltage is fed into the output side. The maximum current load for the modules is 0.7 A. Moreover, the voltage will be galvanically isolated from UPOW.

Power supply EU5C-SWD-PF1-1 and EU5C-SWD-PF2-1

Via terminal UAUX, EU5C-SWD-PF1-1 and EU5C-SWD-PF2-1 power feeder modules supply a new 24 V DC voltage for powering 24-VDC contactors. These modules segment the power supply by stopping the 24-V supply wires (24 V DC and 0 V) in the ribbon cable and feeding a new voltage on the output side. The maximum current load for the modules is 3 A (CE) or 2 A (UL). Moreover, the voltage will not be galvanically isolated from UAUX.

![Diagram of power feeder modules](image-url)
Connection cables and fusing for U_{POW} and U_{AUX} power supplies

The power supply for coordinators and power feeder modules is connected using push-in terminals.

Use cables with the following characteristics for this purpose:

- solid: 0.2 - 1.5 mm2 (AWG 24-16)
- fine wire 0.25 - 1.5 mm2 (AWG 24-16) with appropriate isolated wire-end sleeves with plastic collars in accordance with DIN 46228, Part 4, minimum length 8 mm.

![Figure 26: Power supply for coordinator and power feeder modules](image)

2.2.4.2 Power supply in distributed environments

SmartWire-DT I/O modules with an IP67 degree of protection are used to connect sensors and actuators in distributed environments. These modules are connected with a 5-conductor round cable that, in addition to communication and address assignment wires, carries the 24-V supply voltage for the modules and connected sensors/actuators.

The connection between the round cable and the modules is made using standardized M12 plug connectors.

Table 10: Pin assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brown</td>
<td>24 V supply voltage for SmartWire-DT modules + sensors/actuators</td>
</tr>
<tr>
<td>2</td>
<td>white</td>
<td>Data cable A</td>
</tr>
<tr>
<td>3</td>
<td>blue</td>
<td>0 V</td>
</tr>
<tr>
<td>4</td>
<td>black</td>
<td>Data cable B</td>
</tr>
<tr>
<td>5</td>
<td>yellow/green</td>
<td>Select cable for automatic addressing of the SWD slaves</td>
</tr>
</tbody>
</table>
Switching from an 8-conductor ribbon cable to a 5-conductor round cable

An SWD4-SFL8-12 control panel cable gland is needed in order to switch from the 8-conductor ribbon cable in a control panel to the 5-conductor round cable used for distributed environments. When doing so, the DCIN supply terminals on the cable gland need to be used to connect the 24 V DC supply voltage for the SmartWire-DT modules in the field. This voltage will then be used to power the SmartWire-DT modules and the connected sensors/actuators.

![Figure 27: Switch cabinet bushing SWD4-SFL8-12](image)

A 24 V DC voltage can be fed into the round cable in one of two ways:

Using the ribbon cable’s internal 24-V voltage

In addition to its DCIN terminals, the control panel cable gland also features DCOUT terminals that output the ribbon cable’s 24 V DC voltage, which is normally used to power contactors. If the DCOUT terminals are connected to the DCIN terminals, the loads on the round cable will have the ribbon cable’s maximum current of 3 A (CE) or 2 A (UL) available to them.
The 24 V DC voltage on the ribbon cable is fed through the UAUX terminals on coordinators / EU1C-SWD-PF... power feeder modules and is normally used to energize contactors. When the 24-V voltage on UAUX is interrupted, these contactors will drop out. This means that if the ribbon cable’s 24-V voltage is used – as described here – at the control panel cable gland in order to power M12 modules and sensors and actuators, all SmartWire-DT modules in the distributed environment will be switched off if the 24-V voltage at the corresponding UAUX terminal is switched off.

If, as shown here, the ribbon cable’s 24-V voltage is used to power SmartWire-DT modules with an IP67 degree of protection in distributed environments, this voltage will be galvanically connected to the SmartWire-DT modules’ 15-V supply. This means that removing the 24-V UAUX supply on the coordinator will no longer reliably ensure that the contactors will be de-energized (moreover, this would result in the supply voltage for all SmartWire-DT modules in the corresponding distributed environment to be removed).

External supply

By connecting an external power supply to the DCIN terminals, the M12 round cable’s maximum ampacity of 4 A can be used. This power supply must be galvanically isolated, and the supply cable must be fused with an appropriate fuse (4 A, CE or UL).

For more details on sizing the fuse, make sure to refer to the additional information in Section 2.2.5, “Fusing the supply cable”, page 43.
2 Engineering

2.2 Planning and configuring hardware

Cable cross-sectional areas for the push-in terminals

- solid: 0.2 - 1.5 mm² (AWG 24-16)
- fine wire 0.25 - 1.5 mm² (AWG 24-16) with appropriate isolated wire-end sleeves with plastic collars in accordance with DIN 46228, Part 4, minimum length 8 mm

Feeding a new supply voltage into a distributed environment

The 5-conductor round cable has an ampacity of up to 4 A. If the power consumption level exceeds this limit, or if the cable lengths involved make the voltage drop too large, an IP67 EU1S-SWD-PF1-1 power feeder module can be used to feed new power. The voltage being fed must be galvanically isolated from the incoming supply voltage.
2 Engineering
2.2 Planning and configuring hardware

The System

Figure 30: Feeding new supply voltage in the field with an EU5C-SWD-PF1 power feeder module

The supply cable must be fused with an appropriate fuse (4 A, (CE, UL)).

Make sure to refer to the additional information in Section 2.2.5, “Fusing the supply cable”, page 43.

Powering the connected sensors/actuators

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors/actuators that are powered through their own power supply must not be connected. Doing so may result in communication malfunctions or damage due to external voltage being fed into the modules’ inputs/outputs.</td>
</tr>
</tbody>
</table>
Switching from a 5-conductor round cable to an 8-conductor ribbon cable

An SWD4-SML8-12 control panel cable gland is needed in order to switch from a 5-conductor ribbon cable in a distributed environment to the 8-conductor ribbon cable in a control panel. Within this context, and in order to power the SmartWire-DT modules connected there, a new 15-V supply voltage needs to be produced for the SmartWire-DT modules in the control panel.

There are several options for producing the aforementioned 15-V supply voltage:

a) Voltage supplied internally via control panel cable gland

The control panel cable gland features internal 15-V generation circuitry designed to produce the 15-V voltage from the 24-V voltage coming from the round cable. The maximum current draw for the 15-V supply voltage for connected switchgear will be 120 mA. It can be used to connect switchgear that is installed in the field and that is connected using the 8-conductor ribbon cable. Examples of such switchgear include motor-protective circuit-breakers (PKZ, PKE) that are installed directly on a machine in a separate enclosure (e.g., CI-K..).
2 Engineering
2.2 Planning and configuring hardware

b) Voltage supplied via a power feeder module

It is also possible to install an EU5C-SWD-PF2-1 power feeder module after the SWD4- SM8-12 control panel cable gland. This power feeder module will supply all the required voltages on the ribbon cable.

2.2.4.3 Powering the 8-conductor round cable

When connecting two control panels, or when connecting pilot devices in surface mounting enclosures, an 8-conductor SWD4-xxLR8 round cable needs to be used. The wires in this round cable are identical to those in the 8-conductor ribbon cable. If a control panel cable gland with a separate power supply feeding voltage into it is required for switching from the ribbon cable to this round cable, the following pin assignment needs to be observed:
2.2 Planning and configuring hardware

Table 11: Pin assignment in 8-conductor connection

<table>
<thead>
<tr>
<th>PIN</th>
<th>Color</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>brown</td>
<td>Device supply +15V</td>
</tr>
<tr>
<td>2</td>
<td>gray</td>
<td>Select cable for automatic addressing of the SWD slaves</td>
</tr>
<tr>
<td>3</td>
<td>pink</td>
<td>Device supply voltage 0V</td>
</tr>
<tr>
<td>4</td>
<td>red</td>
<td>Data cable A</td>
</tr>
<tr>
<td>5</td>
<td>blue</td>
<td>Data cable B</td>
</tr>
<tr>
<td>6</td>
<td>white</td>
<td>0 V, device supply voltage</td>
</tr>
<tr>
<td>7</td>
<td>yellow</td>
<td>Contactor control voltage 0V</td>
</tr>
<tr>
<td>8</td>
<td>green</td>
<td>Contactor control voltage 24V</td>
</tr>
</tbody>
</table>

2.2.5 Fusing the supply cable

The fusing will depend on the type of cable (ribbon cable or round cable) and architecture being used.

2.2.5.1 Fusing the power supply for the ribbon cable

The following applies when fusing the UPOW and UAUX power supply on coordinators and EU5C-SWD-PF.. power feeder modules:

Fusing the UPOW power supply

- Cable protection as specified in DIN VDE 0641 Part 11, IEC/EN 60898 / Cable protection as specified in UL 508 and CSA-22.2 No. 14
- Miniature circuit-breaker 24 V DC, rated operational current 3 A, trip type C.
- Fuse 3 A, utilization category gL/gG

Fusing the UAUX power supply

- Line protection in accordance with DIN VDE 0641 Part 11, IEC/EN 60898:
 - Miniature circuit-breaker 24 V DC rated operational current 3 A; trip type Z or B
 - Fuse 3 A, utilization category gL/gG
- Cable protection in accordance with UL 508 and CSA-22.2 no. 14:
 - Miniature circuit-breaker 24 V DC rated operational current 2 A; trip type Z or B
 - Fuse 2 A

2.2.5.2 8 pole round cable

The following applies when fusing the power supply if using an external power supply to feed terminal A of an SWD4-SFL8-20 control panel cable gland:

- Cable protection in accordance with DIN VDE 0641 Part 11, IEC/EN 60898:
2 Engineering
2.2 Planning and configuring hardware

- Miniature circuit-breaker 24 V DC rated operational current 3 A; trip type Z or B
- Fuse 3 A, utilization category gL/gG
- Cable protection in accordance with UL 508 and CSA-22.2 no. 14:
 - Miniature circuit-breaker 24 V DC rated operational current 2 A; trip type Z or B
 - Fuse 2 A

2.2.5.3 5 pole round cable

The 5-conductor round cable has a maximum current load of 4 A. The following fuses must be installed accordingly. These fuse requirements apply when using an external power supply to feed terminal DCIN of an SWD4-SFL8-12 control panel cable gland, as well as when feeding a new supply voltage via connector X1 of an EU1S-SWD-PF1-2 power feeder module.

Fusing the power supply:
- Cable protection in accordance with DIN VDE 0641 Part 11, IEC/EN 60898
- Cable protection for cable AWG20 70 C in accordance with UL 2238:
 - Miniature circuit-breaker 24 V DC rated operational current 4 A; trip type Z or B
 - Fuse 4 A, utilization category gL/gG

2.2.5.4 Fusing when switching from a 5-conductor round cable to an 8-conductor ribbon cable

Depending on the system’s configuration (changes between round/ribbon cables, how voltage is fed), it may be necessary to consider deviations from the maximum possible 4 A.

There are multiple options for the power supply:
- Fusing on the M12 supply side
- Fusing if voltage is fed when switching from a round cable to a ribbon cable
- Fusing if voltage is fed with an EU1S-SWD-PF1-1 power feeder module in the field

These alternatives are shown in the following diagrams together with the corresponding limit values.

Current limitation when switching from a round cable to a ribbon cable with an SWD4-SML8-12 control panel cable gland

The ribbon cable has a maximum ampacity of 3 A (CE) or 2 A (UL). If an SWD4-SML8-12 control panel cable gland is used, the round cable’s 24-V voltage will be directly connected to the ribbon cable’s 24-V voltage.

A distinction needs to be drawn between two different cases within this context:
2 Engineering

2.2 Planning and configuring hardware

- New power is supplied with the control panel cable gland SWD4-SFL8-12 when the ribbon cable is switched to a round cable.
- In order to protect the ribbon cable after the switch from a round cable to the ribbon cable in the event of a short-circuit, the fusing must be implemented at the supply for the round cable on the basis of the requirements for the ribbon cable, i.e., 3 A (CE) or 2 A (UL).

Figure 34: Current limitation for the ribbon cable at the power supply to the round cable

Current limitation when switching from a round cable to a ribbon cable after an EU1S-SWD-PF1-2 power feeder module is used to supply power

In order to protect the ribbon cable after the switch from a round cable to the ribbon cable in the event of a short-circuit, the fusing must be implemented at the supply to the EU1S-SWD-PF1-2 power feeder module on the basis of the requirements for the ribbon cable, i.e., 3 A (CE) or 2 A (UL).

Figure 35: Current limitation for the ribbon cable when an EU1S-SWD-PF1-2 power feeder module is used to supply power

If the 24 V DC voltage is supplied to the 5-conductor round cable by coordinators or EU5C-SWD-PF... power feeder modules (the 24-V U_{AUX} voltage is connected from D_{OUT} to D_{IN} on the SWD4-SFL8-12 control panel cable...
2 Engineering
2.2 Planning and configuring hardware

gland), no additional measures need to be taken. In this case, the voltage will be fed directly into the ribbon cable, meaning that the required fusing will already be in place.

Combination between control panel cable gland and downstream EU5C-SWD-PF2-1 power feeder module

As an alternative to the options above, an SWD4-SML8-12 control panel cable gland and an EU5C-SWD-PF2-1 power feeder module can be combined to provide the voltages for powering the SmartWire-DT modules in a control panel (15 V) and for powering connected switchgear (24-V contactors).

This option can prove to be effective in the following cases, among others:

- When the power that the control panel cable gland provides for the SmartWire-DT modules in a control panel is not enough.
- When potential isolation is required between the modules in the field and in a control panel.
- When the 24 V DC voltage in the field and the switchgear used in a control panel need to be isolated from each other.
- When all the power (4 A) on the round cable is required.
2.3 Planning and configuring software

The following topics are related to the software planning and configuring stage:

- General information on SmartWire-DT
- PLC configuration,
- organization of the SWD slave data,
- malfunction,
- diagnostics,
- Using universal modules

2.3.1 How SmartWire-DT works

2.3.1.1 Basic information regarding the SmartWire-DT communication protocol

SmartWire-DT is designed to enable communication between a coordinator and up to 99 modules. More specifically, SmartWire-DT makes it possible for both cyclical and acyclical data frames to be transferred between the aforementioned coordinator and modules. Within this context, the maximum cyclical data volume is 1,000 bytes, which can be freely distributed among the modules. There is no limit for the cyclical data for each module.

In addition to cyclical data transfers, SmartWire-DT can also be used to establish acyclical data communication between a higher-level PLC and a single SmartWire-DT module.

SmartWire-DT supports configuring parameters in order to set device-specific properties. Moreover, detailed diagnostic services make it easier to detect and handle error conditions.

32-bit CRC checksums (CRC = Cyclic Redundancy Check) are used to verify that data is transferred correctly.

Figure 36: Telegram structure
2.3 Planning and configuring software

2.3.2 PLC configuration

In terms of its configuration, a SmartWire-DT network is similar to a modular distributed I/O system consisting of a field bus coupler and the corresponding I/O modules. Continuing with this analogy, the SmartWire-DT coordinator would be the field bus coupler, while the SmartWire-DT modules would be the I/O modules. It is important to note, however, that SmartWire-DT modules can be distributed across distances totaling up to 600 m. Generally speaking, however, the way in which the individual modules in a modular distributed I/O system are selected and configured can be applied in SmartWire-DT systems as well.

![Diagram of comparison between two control system configurations: Remote I/O (top) – SmartWire-DT (bottom)](image)

Just like in distributed modular I/O systems, the process data, parameter configuration, and other settings for each module in a SmartWire-DT system are set in the PLC configurator of the corresponding PLC programming system.

The process for creating the PLC configuration will depend on the coordinator being used. In other words, the type of coordinator will define how the coordinator and SmartWire-DT modules will be selected and how communication settings and module-specific parameters will be configured.

Within this context, a distinction needs to be drawn between the following configuration options:

- Configuration using standardized field bus description files
- Configuration using the SWD-Assist planning program
- Configuration for PLCs with an integrated coordinator
2.3.2.1 Configuration using standardized field bus description files

Fieldbus CANopen®

In this case, settings and parameters are configured using an EDS file standardized for CANopen slaves. This file can be imported into any CANopen PLC configurator. Moreover, modules are selected and configured the same way as in a distributed I/O system.

Fieldbus (PROFIBUS-DP)

In this case, settings and parameters are configured using a GSD file standardized for PROFIBUS-DP slaves. This file can be imported into any PROFIBUS-DP PLC configurator. Moreover, modules are selected and configured the same way as in a distributed I/O system. When loading the application, the configuration created will be loaded onto the EU5C-SWD-DP gateway.

PROFINET field bus

In this case, settings and parameters are configured using an XML-based GSDML file standardized for PROFINET I/O devices. This file can be imported into any PROFINET PLC configurator. Moreover, modules are selected and configured the same way as in a distributed I/O system. When loading the application, the configuration created will be loaded onto the EU5C-SWD-PROFINET gateway.

Fieldbus EtherCAT

In this case, settings and parameters are configured using an XML-based ESI file standardized for EtherCAT slaves. This file can be imported into any EtherCAT PLC configurator. Moreover, modules are selected and configured the same way as in a distributed I/O system. When loading the application, the configuration created will be loaded onto the EU5C-SWD-ETHERCAT gateway.

2.3.2.2 Configuration using the SWD-Assist planning program

Fieldbus Ethernet/IP

In this case, settings and parameters are configured using the SWD-Assist planning program. The program will also be used to load the configuration onto the EU5C-SWD-EIP-MODTCP field bus gateway via the gateway’s diagnostic interface. In order to make imports in Rockwell’s RSLogix 5000 programming system easy, SWD-Assist will generate a standardized Excel file. This file will contain tag entries (compliant with the specifications for the RSLogix programming system) for all possible input and output variables.

Fieldbus Modbus-TCP

In this case, settings and parameters are configured using the SWD-Assist planning program. This program will also be used to load the configuration onto the EU5C-SWD-EIP-MODTCP field bus gateway via the gateway’s diagnostic interface. SWD-Assist will generate an export file containing the mapping assignments between the SmartWire-DT modules’ input and output data and the corresponding Modbus registers.
2 Engineering
2.3 Planning and configuring software

Fieldbus Powerlink

In this case, settings and parameters are configured using the SWD-Assist planning program. This program will also be used to load the configuration onto the EU5C-SWD-POWERLINK field bus gateway via the gateway’s diagnostic interface. In order to make it easy to work with B&R’s Automation Studio programming system, SWD-Assist will generate an XML-based XDD file with the generated input and output data. This file will ensure that all input and output variables are available so that they can be easily used in the user program.

2.3.2.3 Configuration for PLCs with an integrated coordinator

Control relay easy802/easy806

In this case, settings and parameters are configured using EASY-SOFT-PRO programming software. This software already features the essential parts of the SWD-Assist planning program. When using this approach, the SmartWire-DT modules' inputs and outputs are mapped directly to the inputs and outputs in the programming software, making it possible to use them in the user program.

Controller XC152…, HMI-PLC XV1…

In this case, settings and parameters are configured directly in the CODESYS V2.3/V3 PLC programming system’s PLC configurator. When using this approach, the SmartWire-DT modules’ inputs and outputs are mapped directly to the PLC’s inputs and outputs and can be processed directly.

For more information, please refer to the manuals for the corresponding coordinators.

2.3.3 Data profiles

SmartWire-DT supports a variable volume of cyclical data for transfers. For this purpose, the system uses data profiles that allow programmers to have flexible access to any module information they require. And in cases in which a SmartWire-DT module supports several data profiles, the desired data profile can be selected in the PLC configurator and will be sent to the module when the SmartWire-DT network is initialized. Finally, if the selected data profile does not map all data to cyclical data communication frames, the missing information can still be read or written using acyclical data communication.
2.3 Planning and configuring software

2.3.4 Configuring a SmartWire-DT network’s parameters

In addition to selecting SmartWire-DT modules, the PLC configurator can also be used to configure key parameters that define how the SmartWire-DT network and its modules will behave. These parameters are available in all coordinators.

2.3.4.1 Parameter settings in the coordinator for a SmartWire-DT network

“SWD-Baudrate” parameter

Setting options: 125 kBaud (default) or 250 kBaud

“All slaves optional” parameter

This parameter is used to control the coordinator’s behavior with regard to the SmartWire-DT modules if it is unable to establish any communication with them. This can happen, for instance, if there are modules that are not connected to (have been unplugged from) the SmartWire-DT network or if there is a module that is malfunctioning and therefore is not communicating with the coordinator. Depending on the parameter setting chosen, the coordinator may switch to the “fail-safe” operating mode. In this mode, all the outputs of the remaining SmartWire-DT modules will be set to zero.

Option: Defined by each slave = default setting

If this setting is selected, the option for defining whether the coordinator will switch to the “fail-safe” operating mode will be set when configuring the parameters for the individual modules.

If the default setting is not changed in the corresponding module, the coordinator will switch to the “fail-safe” operating mode if individual SmartWire-DT modules drop out. This means that any output data that needs to be transferred from the PLC to the SmartWire-DT modules will not be written. When this occurs, the coordinator will notify the PLC, with the specific method for doing so depending on the specific coordinator being used. For example: When using an EU5C-SWD-DP PROFIBUS-DP gateway, a diagnostic alarm will be generated in the higher-level PLC; when using an
easy802 or easy806 control relay, diagnostic bit I13 will be set. For more details, please refer to the documentation for the coordinator and PLC system being used.

- **Yes:**
 If the parameter is set to “Yes”, communication with the remaining modules will continue if a module drops out or is missing regardless of how the parameter is configured in the individual module. The coordinator will use the first input byte in the diagnostic data to signal that the module is missing so that the user program can respond as required.

“Compatible devices allowed” parameter

- **Yes:**
 Setting this parameter to “Yes” will make it possible, in the event of a malfunction, to replace certain SmartWire-DT modules with other compatible modules without making it necessary to modify the PLC configuration. For example, a malfunctioning LED (M22-SWD-LED-W) can be replaced with an M22-SWD-K11LED-W LED element with a pushbutton when the parameter is set to “Yes”.

- **No = default setting:**
 It will only be possible to replace the device with an identical device.

“Replacement during operation permissible” parameter

- **Yes:**
 Setting this parameter to “Yes” will make it possible to replace malfunctioning SmartWire-DT modules without having to explicitly reconfigure the network by pressing the configuration button. This function can only be used with modules SWD4-FFR-PF1-1 and SWD4-FFR-ST1-1.

- **No = default setting:**
 If a module is replaced, it will be necessary to assign addresses again.

Figure 38: Configuring a SmartWire-DT network for a PROFIBUS-DP network

For more information on these parameters, please refer to the manuals for the corresponding coordinators.
2.3.4.2 Parameter settings for SmartWire-DT modules

The following parameter options are available for all SmartWire-DT modules:

“Device must be present” parameter

This parameter will only take effect if the “All slaves optional” parameter is set to “Defined by each slave” when configuring the communication settings for the coordinator.

If this parameter is set (default setting), the SWD line will switch to the “fail-safe” operating mode if the module drops out or is missing. If the parameter is set to “Device must not be present” instead, the coordinator’s communication with the other modules will continue as usual even if the module drops out or is missing. Process data input byte 0 IB0, bit 6 will be used to signal the module’s absence.

“Replacement by universal module” parameter

If this setting is selected, it will be possible to replace the planned module with a universal module (→ Section 2.2.2, “SWD card”, Page 25).

For descriptions of additional device-specific parameters, please refer to the “Programming” chapter in the manuals for the corresponding SmartWire-DT modules.
2.3.5 I/O data

SmartWire-DT supports both cyclical and acyclical data transfers. Cyclical data is transferred with every SmartWire-DT cycle and is typically mapped to the PLC’s input and output data. Meanwhile, acyclical data is requested specifically when necessary, normally with specific function blocks.

2.3.5.1 Cyclic data transfer

All the cyclical input and output data of the configured SmartWire-DT modules is stored in a coordinator data storage area referred to as a “process image”. The input data can have a maximum size of 800 bytes, while the output data can have a maximum size of 642 bytes. The total size of the data storage area, however, must not exceed 1,000 bytes. Data is cyclically exchanged between the coordinator and all the modules by means of a check-sum message, which eliminates the need to establish an individual communication connection to each individual module. Instead, each module reads the receive data intended for it (= PLC output data) and writes its send data (= PLC input data). At the end of the transfer cycle, after the frame is checked and no errors are detected, the coordinator declares the data to be valid so that it can be processed.

Due to their specific characteristics, certain coordinators may result in limitations that make it impossible to actually use the maximum data volume limit of 1,000 bytes for cyclically transferred data. There are a variety of causes that can result in this, including the limitations of the field bus being used (Table 2, page 21).

The use of a check-sum message means that the total cycle time essentially depends on the total payload data volume only, without the number of modules having any effect. The result of this is a marked improvement in protocol efficiency.

2.3.5.2 Acyclical data transfer

Acylical data can be used to read information from modules that does not have to be transferred with every cycle. An example of this information is the installed trip block model in a PKE electronic motor-protective circuit-breaker.

The maximum data volume for acyclical communication is 120 bytes of payload data per frame. Moreover, each module can support up to 256 acyclical data objects. In order to prevent additional acyclical data communication from placing an excessive load on cyclical data communication, only one single acyclical data frame is allowed for each SmartWire-DT cycle.

Table 13: Example showing the maximum SmartWire-DT cycle time in a network with 40 modules, both with and without an optional acyclical data frame
2.3 Planning and configuring software

2.3.6 Diagnostics

SmartWire-DT offers a variety of diagnostic information that provides details on the network’s and modules’ status in the control system. Within this context, a distinction must be drawn between two types of diagnostic information:

- General network/module diagnostics (available for all SmartWire-DT modules)
- Individual, module-specific diagnostics

2.3.6.1 General diagnostics

Each SmartWire-DT module will have at least one input byte in the cyclical data available to it. Bits 0 to 3 can contain process data information, while bits 4 to 7 contain general status information that every SmartWire-DT module provides.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Used by the specific module</td>
<td>Depends on usage</td>
</tr>
<tr>
<td>1</td>
<td>DIAG</td>
<td>0: no diagnostic alarm
1: Diagnostic alarm</td>
</tr>
<tr>
<td>2</td>
<td>PRSNT</td>
<td>0: card not present
1: card present</td>
</tr>
<tr>
<td>3</td>
<td>SUBST</td>
<td>0: planned card is present
1: Universal module (M22-SWD-NOP, M22-SWD-NOPC, EU1M-SWD-NOP) present</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Baud rate [Kbaud]</th>
<th>In-/output data [Byte]</th>
<th>Max. cycle time (ms)</th>
<th>Cyclic data</th>
<th>Incl. acyclical data (40 bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>96/24</td>
<td>12.5</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>20/20</td>
<td>6.0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>96/24</td>
<td>6.2</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>20/20</td>
<td>3.0</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>
2 Engineering
2.3 Planning and configuring software

DIAG: Diagnosis
If this bit is set, the module is signaling module-specific diagnostics. The specific cause of a fault (e.g., short-circuit at output) can then be read using acyclical data communication.

PRSNT: Present
If this bit is set, the module is present and exchanging data with the coordinator and the data being transmitted to the PLC is valid. If it is not set, the module is either malfunctioning or not connected to the communication system (e.g., unplugged).

SUBST: Substitute
If this bit is set, it means that an M22-SWD-NOP or EU1M-SWD-NOP universal module is being used as a placeholder for the planned module. In order for this to be possible, the “Replacement by universal module” parameter needs to have been enabled in the PLC configuration when configuring the relevant module.

2.3.6.2 Module-specific diagnostics
If the DIAG bit is set, this means that there is a module-specific fault. Every SmartWire-DT module manufacturer has a maximum of 256 diagnostic codes available to them, and the specific error code involved can be determined using acyclical services. For more information on the type of acyclical access involved, please refer to the manual for the coordinator and/or programming system being used. For the specific messages that a SmartWire-DT module can send, please refer to the documentation for the module.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x17</td>
<td>Out-of-range high reading on at least one temperature input</td>
</tr>
<tr>
<td>0x18</td>
<td>The lower measuring range limit is being fallen below at least one temperature input</td>
</tr>
</tbody>
</table>

2.3.7 SWD-Assist (Offline function)
SWD-Assist is a program designed to help you plan and configure SmartWire-DT networks for systems.

The SWD-Assist program can be downloaded free of charge from the Internet at:

http://www.eaton.eu → Customer Support → Download Center → Documentation by entering “SWD-Assist” as a search term into the Quick Search field.
SWD-Assist features a device catalog that can be used to drag and drop all the components you need onto a canvas, making it easy to create a Smart-Wire-DT network project.

This device catalog includes:

- Coordinators (e.g., EU5C-SWD-DP PROFIBUS-DP gateway)
- SmartWire-DT modules such as
 - Input/output modules (e.g. EU5E-SWD-8DX),
 - Interface modules for contactors (e.g. DIL-SWD-032-001),
 - Interface modules for motor-protective circuit-breakers (e.g. PKE-SWD-32),
 - Interface modules for circuit-breakers (e.g. PKE-SWD, NZM-XSWD704).
- Accessories such as
 - Power supply units (e.g. EU5C-SWD-PF1-1),
 - Cables (ribbon cables and round cables)
 - Connectors, plugs, bus terminators

SWD-Assist features the following functions to help you create your network:

- A **length calculation** function that will calculate the length of the cables you are using to connect the various SmartWire-DT modules or recommend a suitable length
- An **autocomplete** function that will analyze the existing SWD line and automatically add missing components
- A function that calculates **current consumption** and **voltage drop** for
 - The power supply for the SmartWire-DT modules’ electronics
 - The 24-V power supply for the connected switchgear
 - The power supply for IP67 modules in distributed environments, taking into account the sensors and actuators connected there

The program will indicate any cases in which the permissible limits are exceeded, making it possible to add new power supply modules if necessary. This will be done automatically if you use the “autocomplete” function.

- A **plausibility check** that can be used to check that your SmartWire-DT network is set up correctly, either automatically or when you explicitly run the check
- A function for **generating project-specific device description files** – e.g., a GSD file for use in PROFIBUS-DP projects or a GSDML file for PROFINET
- A function for **generating an order list** with all the components in the network you create
- A function for **printing out** the project
2 Engineering
2.3 Planning and configuring software

Figure 39: Planning and configuring software SWD-Assist
3 Installation

Installing a SmartWire-DT network involves the following steps:

- Physically setting up the SWD network
 - Installation in control panels
 - Installation in the field
 - Connecting external pilot devices
- Commissioning the SmartWire-DT network
 - Configuring the SWD line
 - Testing the connected SmartWire-DT modules
 - Connecting to the PLC

3.1 Installing a SmartWire-DT network

3.1.1 Installation in control panels

8-conductor SWD4-.LF8-24 ribbon cables need to be used inside control panels. These ribbon cables feature a dielectric strength of 600 V (CE, UL) and can accordingly be routed in the same cable duct with live cables with a voltage of up to 600 V.

3.1.1.1 Assembling a ribbon cable

8-pin SWD4-8MF2 ribbon connectors need to be connected at the beginning and end of the ribbon cable. This cable is available as a prefabricated cable in lengths of 3, 5, or 10 m (SWD4-3(5,10)LF8-24-2S) or as a 100-m ribbon cable (SWD4-100LF8-24) that can be used to make custom ribbon cables. In the latter case, the ribbon connectors need to be installed on the cables using an SWD4-CRP2-1 crimper.

![SmartWire-DT ribbon cable with SWD4-8MF2 ribbon connectors at the beginning and end of the cable](image-url)
3 Installation
3.1 Installing a SmartWire-DT network

NOTICE
Do not use any tool other than crimper SWD4-CRP2 to install the ribbon connector!

To do so, follow the steps below:

▶ Push the open blade terminal, with the transparent top part of the plug pointing upwards, into the crimper guide up to the stop pin.

Figure 41: Placing the ribbon connector inside the crimper

The introduction hole on the blade terminal is then accessible from the front in the crimper.

▶ Hold the ribbon cable in front of the connector opening in such a way that the black ribbon cable wire is next to the white stripe on the bottom part of the crimper. This applies both when installing the connector at the beginning of the ribbon cable and at its end, and will ensure that you connect the cable with the correct polarity.

→ Make sure that the cut edge of the 8-pole ribbon cable is straight and right-angled.

▶ Push the ribbon cable up to the stop via the guide in the bottom part of the crimper between the blade contacts of the black bottom part of the plug and the transparent, movable top part of the plug.
Then crimp this blade terminal by pressing the crimper once until you feel a clear stopping point.

Repeat the steps above to install a connector at the other end of the cable.

The ribbon cable now has a ribbon connector on each end. Keep in mind that the cable now has a specific direction, meaning it has a specific beginning and a specific end:

- **Cable starting point**: The arrows on the ribbon cable will be pointing away from the connector.
- **Cable ending point**: The arrows on the ribbon cable will be pointing towards the connector.
3 Installation
3.1 Installing a SmartWire-DT network

3.1.1.2 Mount the external device plug

In order to connect SmartWire-DT modules inside a control panel, you will need to use SmartWire-DT external device plug SWD4-8SF2-5. Crimper SWD4-CRP-1 is used to install this plug.

![SWD external device plug](image)

Figure 43: SWD external device plug

To install the external device plug, follow the steps below:

▶ On the basis of the position of the SWD slave determine where the first external device plug has to be fastened to the ribbon cable.

![SWD device plug with sufficient cable length](image)

Figure 44: SWD device plug with sufficient cable length

Once you know where the plug goes:

▶ Align the ribbon cable and the external device plug so that the imprints on both parts are visible.
▶ Insert the ribbon cable in the device plug guide so that the black arrow on the ribbon cable is pointing in the same direction as the black arrow on the movable top part of the plug. Correct polarity is ensured with this arrangement.

![Mount the external device plug](image)

Figure 45: Mount the external device plug

NOTICE

When installing the plugs, make sure that the ribbon cable’s polarity is correct.
Do not use any tool other than crimper SWD4-CRP-1 to install the external device plugs!
3 Installation
3.1 Installing a SmartWire-DT network

► Fix the ribbon cable to the external device plug by hingeing down and pressing in the centre of the top part of the plug until it audibly engages into the bottom part. Corrections to the plug are now still possible by pushing it sideways.

► If you need to release the latch, insert a screwdriver at the end of the black line between the top part of the plug and the latch on the bottom part of the plug. Then lift the top part.

► Place the secured external device plug inside the crimper in such a way that the actual socket can be lowered into the recess on the top part of the crimper.

► Then crimp this external device plug by pressing the crimper once until you feel a clear stopping point.

Figure 46: Crimping the SWD device plug in the crimper

► Install all other external device plugs as described above.

Make sure that there is enough space between every two external device plugs. This will make it easier to install the SmartWire-DT modules later on and remove them if necessary.
3 Installation
3.1 Installing a SmartWire-DT network

3.1.1.3 Jumper for unused external device plugs

When an external device plug is installed on the ribbon cable, the plug cuts through a wire used to assign addresses to modules. If you install any external device plugs that you do not end up using, you will need to install an SWD4-SEL8-10 jumper unit on each of these plugs. Otherwise, the system will not be able to assign addresses to the SmartWire-DT modules downstream of the unused plugs.

Press the jumper unit onto the external device plug until you hear it click into place.

![SWD4-SEL8-10 jumper unit for external device plugs](image)

3.1.1.4 Connector for connecting ribbon cables

If you need to connect two ribbon cables that have an 8-pin ribbon connector at their beginning and end, use an SWD4-8SFF2-5 connector.

CAUTION

For correct polarity the black conductor of the ribbon cable must be inserted into the coupling so that it is lying next to the line shown in black with the designation +15 V.

![Connect SWD ribbon cables with a coupling for an 8-pole blade terminal](image)
3.1.5 Installing the bus terminator

The SWD line needs to be terminated with a bus terminator.

Bus termination for installed ribbon cable

If the SWD line ends with a ribbon cable, you will need to connect an SWD4-RC8-10 SmartWire-DT bus terminator at the end of the ribbon cable.

![Figure 49: Connecting the ribbon connector to the bus terminator](image)

3.1.2 Installing I/O modules with an IP67 degree of protection in distributed environments

In order to connect I/O modules with an IP67 degree of protection, you will need a 5-conductor SWD4-...LR5... round cable with M12 plug connectors (A-keyed).

Since SmartWire-DT communication on the coordinator always starts with a ribbon cable, you will first have to switch from the ribbon cable to the round cable. To switch from the 8-conductor ribbon cable in the control panel to a 5-conductor round cable, you will need to use cable adapter SWD4-SFL8-12, which is meant to be installed on one of the control panel’s sides (maximum thickness: 4 mm). This adapter features DCIN terminals through which the 24 V DC power supply for the SmartWire-DT modules in the field is supplied. This voltage is used to power the SmartWire-DT modules and the connected sensors/actuators.

Use an SWD4-SML8-12 cable adapter if you then need to switch from the round cable back to a ribbon cable for another control panel.
3 Installation
3.1 Installing a SmartWire-DT network

Figure 50: Cable adapters for switching from a ribbon cable to an M12 round cable and back

Installing the cable adapter

To install the cable adapter with an integrated round socket or round plug, follow the steps below:

- Drill a hole with a diameter of 15.3 mm into a control panel with a side thickness of up to 4 mm.
- Guide the control panel cable gland thread through the hole. Use the enclosed hex locknut to fasten the control panel cable gland in place.
- Plug the SWD line’s ribbon connector into the adapter connector.
- Plug the round cable’s round plug or round socket into the control panel cable gland’s socket or plug as applicable.
- Fasten the threaded ring on the round cable onto the control panel cable gland’s thread.
3 Installation

3.1 Installing a SmartWire-DT network

Connection of power supply

To connect the power supply, you will need to use the cable adapter’s push-in terminals. Based on your planned configuration, either connect the internal 24 V DC voltage from connector X3 to the terminals on connector X2 or connect an external power supply to feed a new 24-V voltage into X2.

Installing the SmartWire-DT modules in the distributed environment

In order to connect the SmartWire-DT modules in the distributed environment, you will need to use 5-conductor SWD4-xxLR5-2S cables. These cables are available as prefabricated cables in various lengths.

Using these cables will guarantee error-free transmissions up to the maximum possible SWD line length of 600 m.

Making your own round cables

To make your own round cables, use round cable SWD4-xxxLR5 and 5-pin SWD4-Sx5-67 M12 plug connectors.

Please make sure to observe the following pinout when assembling round cables:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>brown</td>
<td>24 V supply voltage for SmartWire-DT modules + sensors/actuators</td>
</tr>
<tr>
<td>2</td>
<td>white</td>
<td>Data cable A</td>
</tr>
<tr>
<td>3</td>
<td>blue</td>
<td>0 V</td>
</tr>
<tr>
<td>4</td>
<td>black</td>
<td>Data cable B</td>
</tr>
<tr>
<td>5</td>
<td>gray</td>
<td>Select cable for automatic addressing of the SWD modules</td>
</tr>
</tbody>
</table>

Figure 51: SWD4-SFL8-12
3 Installation
3.1 Installing a SmartWire-DT network

Installing a bus terminator in the distributed environment

Bus terminator SWD4-RC5-10 needs to be installed on the last module’s SWD-OUT-connector (Figure 50).

3.1.3 Installing a cable adapter for switching from a ribbon cable to an 8-conductor round cable

To connect two control panels with SmartWire-DT, or to connect pilot devices in surface mounting enclosures, you will need to use an 8-conductor round cable. This cable can be connected directly or with plug connectors.

Since SmartWire-DT communication on the coordinator always starts with a ribbon cable, you will first have to switch from the ribbon cable to the 8-conductor round cable. To switch, you will need to use cable adapter SWD4-SFL8-20 or SWD4-FRF8-10.

Installing cable adapters SWD4-SFL8-20 and SWD4-SML8-20

Cable adapters SWD4-SFL8-20 and SWD4-SML8-20 need to be installed on the side of the corresponding control panel (maximum thickness: 4 mm).

Figure 52: Round socket control panel cable gland in control panel 1, round plug control panel cable gland in control panel 2

1. Control panel 1
2. Control panel 2
3. Flat band conductor
4. Round cable
5. Switch cabinet bushing with an integrated round socket
6. Switch cabinet bushing an integrated round plug

To install the cable adapter with an integrated round socket or round plug, follow the steps below:

- Drill a hole with a diameter of 18.5 mm into a control panel with a side thickness of up to 4 mm.
- Guide the control panel cable gland thread through the hole. Use the enclosed hex locknut to fasten the control panel cable gland in place.
- Plug the SWD line’s ribbon connector into the adapter connector.
- Plug the round cable’s round plug or round socket into the control panel cable gland’s socket or plug as applicable.
- Fasten the threaded ring on the round cable onto the control panel cable gland’s thread.
3 Installation
3.1 Installing a SmartWire-DT network

Connection of power supply

To connect the power supply, you will need to use the cable adapter’s push-in terminals. Based on your planned configuration, either connect the internal 24 V DC voltage from connector B to the terminals on connector A or connect an external power supply to feed a new 24-V voltage into connector A.

Installing cable adapter SWD4-8FRF-10

SWD4-8FRF-10 cable adapters are designed to be mounted on DIN-rails or, by using ZB4-101-GF1 device feet available as accessories, on mounting plates. The ribbon cable with the connected ribbon connector needs to be plugged into the socket. Meanwhile, the round cable needs to be connected directly using the eight numbered and color-coded push-in terminals.

Figure 53: Connection of power supply

Figure 54: Installation of cable adapter SWD4-8FRF-10
3 Installation
3.1 Installing a SmartWire-DT network
4 Commissioning

SmartWire-DT networks always need to be commissioned together with the coordinator and, if there is one, with a higher-level controller (PLC) as well.

Read the operator manual and commissioning instructions for the higher-level controller (if any).

To commission a SmartWire-DT network, you will need to carry out the following steps:

- Check installation,
- Switch on the power supply,
- Store a configuration with the connected SmartWire-DT modules in the coordinator
- Check the installed SmartWire-DT modules
- Save the project configuration in the coordinator
- Display the status and run the wiring test
- Start the user program

If any faults occur during commissioning or operation, the system will use the status indicators on the coordinator to indicate them. If the status indicators are green, this means that commissioning has been successful or that the system is running properly (as applicable).

Table 15: Status displays

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Field bus status indicator (on gateways)</th>
<th>Config. status display</th>
<th>SWD status display</th>
</tr>
</thead>
<tbody>
<tr>
<td>The SmartWire-DT network configuration is read successfully</td>
<td>–</td>
<td>–</td>
<td>Green continuous light</td>
</tr>
<tr>
<td>The SmartWire-DT network configuration is read successfully</td>
<td>–</td>
<td>Green continuous light</td>
<td>Green continuous light</td>
</tr>
<tr>
<td>PLC running, data being transferred successfully</td>
<td>Green continuous light</td>
<td>Green continuous light</td>
<td>Green continuous light</td>
</tr>
</tbody>
</table>

4.1 Check installation

Checking that all SmartWire-DT modules are installed correctly

In order for it to be possible to commission a SmartWire-DT network, all the corresponding SmartWire-DT modules need to be connected to the SmartWire-DT communication cable (ribbon cable or round cable). In addition, there needs to be a bus terminator installed at the end of the cable.

To check that the SmartWire-DT cable has been routed properly, check the following:

- Is the arrow on the ribbon cable pointing away from the gateway and towards the SmartWire-DT modules?
- Are the arrows on the ribbon cable pointing towards the same direction as the arrows on the installed external device plugs?
4 Commissioning

4.2 Switch on the power supply

NOTICE

Errors during installation may result in the SmartWire-DT modules and the coordinator being ruined.

Connecting the SWD line to the coordinator

The SWD line needs to be connected to the coordinator using the ribbon connector installed at the beginning of the ribbon cable. The cable’s starting point can be identified by a black arrow on the green ribbon cable that points away from the starting ribbon connector and towards the SmartWire-DT modules.

All SmartWire-DT modules inside control panels need to be connected with external device plugs, while SmartWire-DT modules in the field need to be connected with 5-conductor SmartWire-DT cables.

4.2 Switch on the power supply

Check the power supply

Check to make sure that all the power supply connections for the SmartWire-DT modules are connected, i.e.:

- All UPOW terminals on the coordinator and on EU5C-SWD-PF2-1 power feeder modules.
- All UAUX supply voltages on coordinators and on EU5C-SWD-PF… power feeder modules if contactors are being energized using SmartWire-DT modules.
- All voltages at cable adapters (points at which the system switches from a ribbon cable to a round cable or vice versa) with voltage feeding points.
- All EU1S-SWD-PF1-1 power feeder modules in the field.

Switch on the power supply

DANGER

Death may occur if any motors start unexpectedly or if any system parts are energized unexpectedly.

When switching the power supply on, make sure that the coordinator enters a controlled and safe operational state.

Switch supply voltage UPOW on. If required, switch supply voltage UAUX on if you are operating any contactors on the SWD line. All SmartWire-DT modules will use their SWD status indicator to indicate that they are being powered (flashing or continuous light). If the SmartWire-DT status display for a module is off, this may be due to one of the following reasons:

- The device is faulty.
- There is no 24-V supply voltage at the UPOW terminals if an EU5C-SWD-PF2… or EU1S-SWD-PF… power feeder module is installed upstream.
- Supply cable short-circuit or overload.
4.3 Storing the target configuration

In order for data to be exchanged between the coordinator and the SmartWire-DT modules, a configuration containing all connected modules needs to be stored in the coordinator. This list of currently installed SmartWire-DT modules (“actual configuration”) needs to be read by pressing the **Config.** configuration button that is found on every coordinator, after which the list will be stored as the “target configuration” in the coordinator. Alternatively, this function can also be run from the **Online** menu in the SWD-Assist planning and commissioning program (**Renew** function). Every time the coordinator starts (e.g., when the supply voltage is switched on), it will look at the target configuration to see which SmartWire-DT modules need to be installed and check the actual physical network to make sure that these modules are actually installed. The purpose of this check is to ensure that no changes have been made to the SWD line. If the check is completed successfully, the addresses used by the coordinator to address the SmartWire-DT modules during normal operation will be assigned.

The target configuration will need to be updated if:

- The SWD line is being put into operation for the first time
- Changes have been made to the actual configuration
- Faulty modules are replaced

There must not be any active data communication between the control system and the SmartWire-DT modules when the configuration is being updated. If necessary, disconnect the field bus connection between the gateway and the controller.

To update the configuration, follow the steps below:

1. Press the **Config.** configuration button on the configurator and hold it down for at least two seconds.

The SWD status indicator will flash with an orange light to indicate that the configuration process is in progress. The coordinator will then start by detecting all connected modules (actual configuration). During this configuration process, the indicators on the SmartWire-DT modules will flash synchronously. Once the process is completed, the information concerning the detected SmartWire-DT modules will be stored in the coordinator. After this, the SmartWire-DT network will be restarted, which will be indicated by the SWD indicators flashing with a green light. Once the network restarts, the coordinator will check whether all the SmartWire-DT modules in its stored
configuration are actually present and will then assign them an address. Finally, once the check and the address assignment process are completed successfully, the SWD status indicator on the coordinator and on all SmartWire-DT modules will show a continuous green light.

This process will be carried out every time the coordinator is switched on, and is designed to ensure that there will be no impermissible discrepancies between the stored target configuration and the "actual configuration" that is actually installed. This means that the SWD status indicators must be showing a solid green light before the network can continue to be put into operation/before the coordinator and the operating system can communicate successfully.

The following errors may occur during the configuration process:

- After a configuration attempt (flashing with an orange light), the SWD status indicator on the coordinator turns RED.
 - No modules could be read. Check that the cable between the coordinator and the SmartWire-DT modules is connected properly.
 - A module is preventing the network from being correctly configured (e.g., due to a malfunction). Try to put the SWD line into operation step by step in order to identify the faulty module, then replace it.

- The SWD status indicator on the coordinator shows a green light, but an address could not be assigned to all SmartWire-DT modules (all modules after a certain SmartWire-DT module have their SWD status indicator flashing).
 - Starting from the first malfunctioning module, check to make sure that the external device plugs are properly connected to the SmartWire-DT modules. If an external device plug is not connected, this will result in all the SmartWire-DT modules that follow it not being detected.
 - Another possible cause is an improperly crimped external device plug or a malfunctioning SmartWire-DT module that is preventing access to the SmartWire-DT modules that follow it.

Table 16: SWD status displays

<table>
<thead>
<tr>
<th>SWD status display</th>
<th>Possible cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No supply voltage at POW</td>
</tr>
<tr>
<td></td>
<td>No target configuration available</td>
</tr>
<tr>
<td>Green continuous light</td>
<td>Actual configuration = Target configuration</td>
</tr>
<tr>
<td>Red flashing</td>
<td>Required module missing</td>
</tr>
<tr>
<td></td>
<td>Target configuration ≠ Actual configuration</td>
</tr>
<tr>
<td>Red continuous light</td>
<td>No SWD line present</td>
</tr>
<tr>
<td>Orange flashing</td>
<td>Target configuration is determined</td>
</tr>
<tr>
<td>Green flashing</td>
<td>Actual configuration is determined</td>
</tr>
</tbody>
</table>
4.4 Checking the installed modules with the help of SWD-Assist

The SWD-Assist program can be used to test the SmartWire-DT modules. This program makes it possible to check the connected modules and inputs, as well as to set outputs if necessary (wiring test → Section 4.6, “Status display, wiring test”, page 78), without having to have a controller connected. The actual functions that are available in the program will depend on the coordinator being used, as well as on whether there is a project configuration available.

Real-time connection to the SmartWire-DT network

In order to establish a real-time connection, the PC on which SWD-Assist is installed needs to be connected to the coordinator’s diagnostic interface using a connection cable. In gateways, this interface will be labeled DIAG; in other coordinators, it will be the programming interface. The type of connection cable that is required will depend on the coordinator being used.

Table 17: Diagnostic interfaces

<table>
<thead>
<tr>
<th>Class</th>
<th>Coordinator</th>
<th>Diagnostic interface (plug)</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway</td>
<td>EUSC-SWD-CAN</td>
<td>RS232 (RJ45)</td>
<td>EU4A-RJ45-USB-CAB1 (USB → RS232)</td>
</tr>
<tr>
<td></td>
<td>EUSC-SWD-DP</td>
<td></td>
<td>EU4A-RJ45-CAB1 (RS232)</td>
</tr>
<tr>
<td></td>
<td>EUSC-SWD-EIP-MODTCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUSC-SWD-PROFINET</td>
<td>USB 2.0 (Mini USB)</td>
<td>USB → Mini-USB</td>
</tr>
<tr>
<td></td>
<td>EUSC-SWD-POWERLINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUSC-SWD-ETHERCAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control relays</td>
<td>EASY802-DC-SWD</td>
<td>RS232 (RJ45)</td>
<td>EU4A-RJ45-USB-CAB1 (USB → RS232)</td>
</tr>
<tr>
<td></td>
<td>EASY806-DC-SWD</td>
<td></td>
<td>EU4A-RJ45-CAB1 (RS232)</td>
</tr>
<tr>
<td>PLC</td>
<td>XC-152</td>
<td>Ethernet (RJ45)</td>
<td>XT-CAT5-X-2</td>
</tr>
<tr>
<td>HMI-PLC</td>
<td>XV-102,XV-152</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To establish the connection, follow the steps below:

▶ Use the appropriate cable to connect the PC to the interface (the DIAG interface on gateways; the programming interface on other coordinators).
▶ Start SWD-Assist, go to the Communication menu, and select the Interface option.

Figure 56: Selection of the interface
4 Commissioning
4.4 Checking the installed modules with the help of SWD-Assist

- Select the interface you are using. (If you are using the Ethernet interface on an XC152, XV102, or XV152 device, make sure to also enter the control system’s IP address.)
- Click on Online.

4.4.1 Target configuration view

The program will read the current target configuration from the coordinator. The current actual configuration will then be shown based on this target configuration.

![Target configuration view](image)

- The canvas on top ① will show all the SmartWire-DT modules detected at the time of configuration (when the Config. button was pressed). The configuration being shown can be used to check whether the SmartWire-DT modules in the planned configuration were actually installed in the right order.
- The SWD status indicator in the above screenshot is green ②, indicating that all the modules in the stored target configuration are actually present.
4.5 Loading the project configuration

When the PLC program is created, a PLC configuration will be generated as well. This configuration describes all the input and output devices that form the image table with the physical input and output addresses used afterwards in the user program. The actual process for generating the PLC configuration will depend on the operating system (PLC, HMI, control relay) and controller architecture (integrated SmartWire-DT interface or field bus gateway) being used.

In order for data to be successfully exchanged between the operating system and the coordinator, the SmartWire-DT network “project configuration” created in the PLC configurator needs to be checked against the “target configuration” stored in the coordinator. This is in order to ensure that the image table of the input and output variables in the PLC program matches the input and output data corresponding to the installed SmartWire-DT network. The process for loading the “project configuration” onto the coordinator will depend on the type of coordinator (gateway, PLC, control relay), the field bus system being used (if any), and the required programming system.

Table 18: List of coordinators

<table>
<thead>
<tr>
<th>Class</th>
<th>Coordinator</th>
<th>Project configuration loaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway</td>
<td>EU5C-SWD-CAN</td>
<td>When Eaton controllers are being used (when Eaton’s XSoft-CODESYS-2 or XSoft-CODESYS-3 programming system is used): When the PLC program is loaded onto the controller, using the CANopen field bus When other programming systems are being used: Not supported1)</td>
</tr>
<tr>
<td></td>
<td>EU5C-SWD-DP</td>
<td>When the PLC program is loaded onto the controller, using the field bus being used</td>
</tr>
<tr>
<td></td>
<td>EU5C-SWD-PROFINET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EU5C-SWD-ETHERCAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EU5C-SWD-EIP-MODTCP</td>
<td>Using SWD-Assist and the diagnostic interface</td>
</tr>
<tr>
<td></td>
<td>EU5C-SWD-POWERLINK</td>
<td></td>
</tr>
<tr>
<td>Control relays</td>
<td>EASY802-DC-SWD</td>
<td>When the PLC program is loaded</td>
</tr>
<tr>
<td></td>
<td>EASY808-DC-SWD</td>
<td></td>
</tr>
<tr>
<td>PLC</td>
<td>XC-152</td>
<td>When the PLC program is loaded</td>
</tr>
<tr>
<td>HMI-PLC</td>
<td>XV-102, XV-152</td>
<td>When the PLC program is loaded</td>
</tr>
</tbody>
</table>

1) It will still be possible, however, to run SmartWire-DT. In this case, the configuration comparison between the planned configuration and the target configuration will be disabled. For more details, please refer to the manual for the EU5C-SWD-CAN gateway.

In addition to the SWD status display used for the comparison between a SmartWire-DT network’s target and actual configurations, all coordinators feature a Config. status display that makes it possible to compare the project configuration and the target configuration. If the project and target configurations match, the Config. status display will show a continuous green light.
4 Commissioning

4.6 Status display, wiring test

Table 19: Config. status display

<table>
<thead>
<tr>
<th>Config. status display</th>
<th>Description</th>
</tr>
</thead>
</table>
| Off | No supply voltage at POW
 | No project configuration available |
| Green continuous light | Project Configuration = Target configuration |
| Green flashing | Project Configuration = Target configuration |
| | But differences are permissible (e.g., compatible modules) |
| Red continuous light | Project Configuration = Target configuration |
| Orange flashing | Target configuration is determined |

The configuration’s status can also be checked in the SWD-Assist program’s Online view.

Figure 58: Checking the status display in the SWD-Assist program after successfully loading the project configuration

4.6 Status display, wiring test

After the project configuration is loaded onto the coordinator, there will be additional information available that is required in order to fully test the SmartWire-DT network:

- In the case of modules that support various data profiles, there may be more data available for cyclical data transfers than in the set standard profile.
- Updated parameters that have an influence on how the inputs/outputs work and/or are represented are also part of the PLC configuration. Examples include the type of sensor selected for analog inputs (current or voltage, Pt100 or Pt1000) and the type of I/O for configurable digital...
modules (input or output) in the case of configurable I/O modules with an IP67 degree of protection. If this information is found in the coordinator, the values for the connected sensors and actuators will be fully and correctly represented. In addition, the wiring test can be used to check that the available outputs are activated correctly.

4.6.1 Status display in SWD-Assist

The status display makes it possible to check connected sensors during commissioning. To do this, actuators and limit switches can be actuated to check that the process signal is received correctly and transmitted to the coordinator via SmartWire-DT. Analog information will be displayed, making it possible to evaluate the connected sensors. It is important to note that this function can be used even if there is no PLC connected.

During normal operation, the status display makes it possible not only to conveniently view process values, but also to easily diagnose error conditions based on the SmartWire-DT network’s graphical representation. These conditions will be indicated with the use of graphic symbols and defined in greater detail with cleartext. Moreover, the coordinator’s diagnostics buffer makes it possible to retrieve past diagnostic messages.

To display the status display, select the appropriate communication connection in the SWD-Assist program and then go online. Then click on the Status Display On button.

![Status Display On](image)

Figure 59: “Status Display On”

The SWD-Assist program will show the states of all the inputs and outputs corresponding to the connected modules on the canvas.
4 Commissioning

4.6 Status display, wiring test

The following information can be gathered when looking at the screenshot in figure 60:

1. **PKE electronic motor-protective circuit-breaker:**
 The motor-protective circuit-breaker has tripped.

2. **DIL contactor module:** The contactor has picked up.

3. **M22-LED-R pilot device (red indicator):** The indicator is on.

4. **Illuminated double actuator pushbutton with white indicator:**
 Contact state and indicator (is off).

Additional detailed information can be obtained by simply clicking on the various individual modules. All the corresponding information will be shown in the **Device parameters** tab.

The screenshot in the following figure shows the detailed information for the PKE motor-protective circuit-breaker.
4.6 Status display, wiring test

4.6.2 Wiring test

In addition to making it possible to check inputs, the SWD-Assist program can also be used to activate outputs. The **Wiring test** function is used for this purpose, and makes it possible to transmit both binary and analog output values to distributed environments. Within this context, it is important to note that this function will only be available if the controller is stopped and the field bus is inactive.
4 Commissioning
4.6 Status display, wiring test

4.6.2.1 Notes

Please keep the following information in mind:

Modifying the parameters for the SmartWire-DT modules may change the properties of an input/output that will have an effect on the wiring test. If there is no project configuration available, there may be discrepancies between the output function and a connected actuator, which in turn may result in undesirable malfunctions.

Examples

EU5E-SWD-2A2A configurable analog module

The analog inputs and outputs in analog module EU5E-SWD-2A2A can be flexibly configured in order to connect sensors and actuators with voltage or current characteristics. If there is no project configuration available, the initial setting for the analog output will be used (0-10 V in this case). If an actuator with a 0-20 mA interface is then connected to the analog module's output, the voltage output produced after setting a setpoint may result in uncontrolled actuator behavior.

EU1E-SWD-2DD configurable digital module

The two inputs/outputs in this module can be flexibly configured as either inputs or outputs. They will be configured as inputs by default. If they are configured this way, an output is connected during operation, and there is no project configuration available, it will not be possible to set this output during the wiring test.

The SWD-Assist program will display the currently applicable I/O configuration so that it can be checked. Before setting any outputs, check to make sure that the I/O configuration is being correctly displayed!

To start the wiring test, select a communication connection in SWD-Assist and go online. Click on the Status Display On button and then click on the Wiring test button.

If the function is not available, this may be due to active data transfers between the higher-level controller and the coordinator. If this is the case, stop the controller or, if necessary, disconnect the field bus connection.

Figure 62: Wiring test
DANGER

Death may occur if any motors start unexpectedly or if any system parts are energized unexpectedly. When switching the power supply on, make sure that the coordinator enters a controlled and safe operational state.

Figure 63: Wiring test: The motor-starter combination contactor will be activated.
4 Commissioning

4.6 Status display, wiring test
5 Fault scenarios

During commissioning and operation, certain situations that will prevent data from being exchanged between the controller and the SmartWire-DT modules may occur. These situations will be indicated with the status displays on the coordinator.

To fix these error conditions, refer to the information below:

1. If the SWD status display is not showing a continuous green light:
 This means that there is a discrepancy between the target configuration (coordinator) and the SmartWire-DT modules that are actually installed. The network will be unable to run properly if there is no valid target configuration.

2. If the Config. status display is not showing a continuous green light:
 This means that there is a discrepancy between the project configuration and the target configuration. If there is no valid project configuration, the coordinator and the operating system will be unable to exchange data.

3. If the field bus status display is not showing a continuous green light:
 This means that there is a problem with the exchange of data between the coordinator and the operating system (only when using gateways). For details on how this indicator is used and troubleshooting instructions, please refer to the manual for the gateway you are using.

The order above corresponds to the order in which the status indicators are laid out on the coordinator from right to left.

SWD-Assist will provide valuable information in the first two cases. In fact, using the program’s online diagnostic functions will make it possible to quickly pinpoint the cause behind the problem.

In addition to the system’s graphical representation, analyzing the fault messages stored in the gateways can also prove to be useful. These messages may point to errors and faults that have occurred in the past, such as a recurring communication fault in a specific module.

For a list of fault messages, please refer to Section 5.4, "Gateway fault messages", page 92.
5 Fault scenarios

5.1 Discrepancies between the coordinator’s target configuration and the SmartWire-DT modules that are actually installed

If the SWD status display is not showing a continuous green light, this means that there is a discrepancy between the target configuration stored on the coordinator and the SmartWire-DT modules that are actually installed. In order for the coordinator and system to be able to communicate with each other, this discrepancy needs to be fixed first.

Table 20: SWD status displays

<table>
<thead>
<tr>
<th>SWD status display</th>
<th>Possible cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>• no supply voltage at POW
• no target configuration present</td>
</tr>
<tr>
<td>Green continuous light</td>
<td>Actual configuration ≠ Target configuration</td>
</tr>
<tr>
<td>Red flashing</td>
<td>• a required card is missing
• Target configuration ≠ Actual configuration</td>
</tr>
<tr>
<td>Red continuous light</td>
<td>No SWD line present</td>
</tr>
<tr>
<td>Orange flashing</td>
<td>Target configuration is determined</td>
</tr>
<tr>
<td>Green flashing</td>
<td>Actual configuration is determined</td>
</tr>
</tbody>
</table>

5.1.1 The SWD status display flashes red

5.1.1.1 Wrong card

If the indicator is flashing red, this means that there is a difference between the target and actual configurations. Every time the coordinator is switched on, it will check whether any changes have been made to the actual configuration since the moment the target configuration was stored (the Config. button was pressed). This will include, for example, cases in which a faulty module has been replaced with a module of the same model without pressing the configuration button afterwards. (Exception: When the “Automatic reconfiguration” parameter is enabled in the coordinator.)

To check the situation, start the SWD-Assist program, switch to the Online view, and open the status display.
5 Fault scenarios

5.1 Discrepancies between the coordinator’s target configuration and the SmartWire-DT modules that are

![Image of status display](image)

Figure 64: Status display showing a wrong module ("different part no.")

In the example above, module 3 has been identified as not matching the target configuration. In the corresponding diagnostic text ("Different part no.!
...") message), SWD-Assist indicates that a device other than the one expected in the target configuration has been found. To fix the problem, you would need to replace the device with the one that was originally configured or update the target configuration with the current device by pressing the Config. button.

5.1.1.2 Required module missing

When configuring the SmartWire-DT modules, you can define what the coordinator should do if a module is missing (→ Section 2.3.4.1, “Parameter settings in the coordinator for a SmartWire-DT network”, page 51).

If, when configuring the corresponding parameters, you specify that certain (or all) modules have to be present and one of those modules is missing later on, data communication between the SmartWire-DT network and the operating system will stop. After this, the outputs on all SmartWire-DT modules will be switched off.

To check the situation, start the SWD-Assist program, switch to the Online view, and open the status display.
5 Fault scenarios

5.1 Discrepancies between the coordinator’s target configuration and the SmartWire-DT modules that are

![Diagram showing SmartWire-DT configuration]

Figure 65: Status display showing that a device is missing

In the example above, module 3 has been identified as being missing.

In the corresponding diagnostic text, the SWD-Assist program indicates that module 3 is a required module (“Required module missing” message) but is not present. As a result, the coordinator will send 0 data to the outputs.
5.1 Discrepancies between the coordinator’s target configuration and the SmartWire-DT modules that are

5.1.2 The SWD status display shows a continuous red light

If the indicator is showing a continuous red light, this means that there is no connection between the coordinator and the SWD line. To check the situation, start the SWD-Assist program, switch to the Online view, and open the status display.

![Image of SWD status display](image)

Figure 66: No connection between coordinator and SmartWire-DT modules

In the example above, all modules are being shown as “missing” (there is a red circle with an “X” inside it under every module). The probable cause behind this is a discontinuity in the ribbon cable between the SWD line and the coordinator.
5 Fault scenarios
5.2 Discrepancies between the coordinator’s project and target configurations

5.2 Discrepancies between the coordinator’s project and target configurations

If the **Config.** status display is not showing a continuous green light, there is a discrepancy between the project configuration created in the PLC configurator and the stored target configuration. In this case, the system’s graphical representation in the SWD-Assist program can be used to easily pinpoint the corresponding discrepancies. Potential causes include an erroneous target configuration (incorrect layout of installed SmartWire-DT modules) and an erroneous project configuration (wrong modules selected in the project configuration).

<table>
<thead>
<tr>
<th>Config. status display</th>
<th>Possible cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>no project configuration present</td>
</tr>
<tr>
<td></td>
<td>Possible causes:</td>
</tr>
<tr>
<td></td>
<td>• Initial commissioning</td>
</tr>
<tr>
<td></td>
<td>• The project configuration in the configurator has been deleted</td>
</tr>
<tr>
<td>Green continuous light</td>
<td>Target configuration = Project Configuration</td>
</tr>
<tr>
<td>Green flashing</td>
<td>Target configuration ≠ Project configuration — however, the difference is permissible (e.g., compatible modules)</td>
</tr>
<tr>
<td>Red continuous light</td>
<td>Target configuration ≠ Project Configuration</td>
</tr>
<tr>
<td>Orange flashing</td>
<td>Target configuration is determined</td>
</tr>
</tbody>
</table>

To check the situation, start the SWD-Assist program, switch to the Online view, and open the status display.

![Figure 67: Discrepancy between project and target configurations](image)
In the above example, the SWD-Assist program is showing that a contactor module with part no. DIL-SWD-32-002 was selected as module 3 in the PLC controller configuration (1). However, a contactor module with part no. DIL-SWD-32-001 has been stored as module 3 in the target configuration (2).

Assuming that the target configuration is correct, you would need to replace the DIL-SWD-32-002 module with module DIL-SWD-32-001 in the PLC programming system’s PLC configuration, i.e., to install the module in the SmartWire-DT network and then store it in a new target configuration by pressing the configuration button on the coordinator.

Depending on the coordinator you are using, the project configuration may be created with the SWD-Assist program instead of with the programming system’s PLC configuration.

If the field bus status indicator is not showing a continuous green light, this means that there is a communication fault in the communication between the gateway and the higher-level controller. Potential causes include an incorrectly set module field bus address (DIP switch for DP and CAN gateways; IP address for Ethernet-based gateways) and field bus master states that prevent active communication.

For more details, please refer to the manual for the corresponding gateway.
The gateway may output the following error messages (sorted by error number):

<table>
<thead>
<tr>
<th>Fault-number</th>
<th>Type of fault</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Info</td>
<td>No diagnostics</td>
</tr>
<tr>
<td>1128</td>
<td>Info</td>
<td>The device scan was started.</td>
</tr>
<tr>
<td>1129</td>
<td>Info</td>
<td>The device scan was completed successfully.</td>
</tr>
<tr>
<td>1130</td>
<td>Errors</td>
<td>The device scan failed.</td>
</tr>
<tr>
<td>1131</td>
<td>Info</td>
<td>Determination of new target configuration started.</td>
</tr>
<tr>
<td>1132</td>
<td>Info</td>
<td>Determination of a new target configuration successful.</td>
</tr>
<tr>
<td>1133</td>
<td>Info</td>
<td>Determination of a new target configuration: No devices found.</td>
</tr>
<tr>
<td>1134</td>
<td>Errors</td>
<td>Determination of a new target configuration failed.</td>
</tr>
<tr>
<td>1135</td>
<td>Info</td>
<td>Checking of planned configuration started.</td>
</tr>
<tr>
<td>1136</td>
<td>Info</td>
<td>Checking of planned configuration successfully completed.</td>
</tr>
<tr>
<td>1137</td>
<td>Info</td>
<td>Checking of planned configuration repeated.</td>
</tr>
<tr>
<td>1138</td>
<td>Errors</td>
<td>Checking of planned configuration failed.</td>
</tr>
<tr>
<td>1139</td>
<td>Warning</td>
<td>0 data (safe state)</td>
</tr>
<tr>
<td>1140</td>
<td>Info</td>
<td>Normal data exchange</td>
</tr>
<tr>
<td>1141</td>
<td>Warning</td>
<td>Wiring test activated.</td>
</tr>
<tr>
<td>1142</td>
<td>Warning</td>
<td>Wiring test deactivated.</td>
</tr>
<tr>
<td>1143</td>
<td>Errors</td>
<td>Configuration is too big.</td>
</tr>
<tr>
<td>1144</td>
<td>Errors</td>
<td>The cyclic data exceed the maximum size.</td>
</tr>
<tr>
<td>1145</td>
<td>Errors</td>
<td>The SEL Out line is faulty.</td>
</tr>
<tr>
<td>1248</td>
<td>Errors</td>
<td>Target configuration is invalid.</td>
</tr>
<tr>
<td>1249</td>
<td>Errors</td>
<td>15V voltage failed.</td>
</tr>
<tr>
<td>1250</td>
<td>Errors</td>
<td>Startup stop: different serial number</td>
</tr>
<tr>
<td>1251</td>
<td>Errors</td>
<td>Incorrect device type</td>
</tr>
<tr>
<td>1252</td>
<td>Errors</td>
<td>Card found at end of the configuration.</td>
</tr>
<tr>
<td>1253</td>
<td>Errors</td>
<td>Double serial number</td>
</tr>
<tr>
<td>1254</td>
<td>warning</td>
<td>Card missing</td>
</tr>
<tr>
<td>1255</td>
<td>Errors</td>
<td>A required card missing.</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail Safe</td>
<td>Safe coordinator operating mode. All SmartWire-DT module outputs will be off. It will still be possible to read inputs.</td>
</tr>
<tr>
<td>Actual configuration</td>
<td>The totality of the SWD modules that are actually installed on a SWD network.</td>
</tr>
<tr>
<td>Power feeder module</td>
<td>Module for feeding a new supply voltage for SmartWire-DT modules and/or switchgear, sensors, and actuators</td>
</tr>
<tr>
<td>Project configuration</td>
<td>The SWD network configuration in the PLC programming system’s operating system</td>
</tr>
<tr>
<td>Target configuration</td>
<td>The configuration stored in the coordinator. During the configuration process, the system’s actual configuration is read and stored in the coordinator.</td>
</tr>
<tr>
<td>SWD assist</td>
<td>Software for planning, configuring, and commissioning a SWD network</td>
</tr>
<tr>
<td>SWD network</td>
<td>Consists of an SWD line (with SmartWire-DT modules) and a coordinator</td>
</tr>
<tr>
<td>SWD line</td>
<td>Consists of cables, SmartWire-DT modules, and SmartWire-DT accessories (connectors, plugs, etc.)</td>
</tr>
</tbody>
</table>
Index

B
Baud Rate .. 26
Bit .. 26
DIAG .. 56
PRSNT ... 56
SUBST ... 56
Blade terminal 61
Bus termination 22, 25

C
Cable adapters 17, 32
CANopen .. 49
Card .. 5, 24
Commissioning 71
Control panel 6
control panel 23
Coordinator 7, 8, 20
Crimper ... 59, 63

D
Data profiles 50
Data transfer
 acyclic ... 54
 cyclic ... 50, 54
Device catalog 57
Device description files 57
Diagnostic interfaces 75
Diagnostics 55

E
EASY-SOFT-PRO 50
easySoft-Pro 50
Engineering 19
EtherCat .. 49
Ethernet/IP 49
EU1M-SWD-NOP 25
EU5C-SWD-DP 49, 52
EU5C-SWD-EIP-MODTCP 49
EU5C-SWD-ETHERCAT 49
EU5C-SWD-POWERLINK 50
EU5C-SWD-PROFINET 49

F
Fault messages, at gateway 92
Fault scenarios 85
Field ... 23
Field bus
 Coupler .. 48
 Description files 49
 Gateways 8
 Systems .. 6
 Systems (supported) 8
Flat band conductor 17, 26

G
Gateways, supported 8

I
Installation 59, 71

L
List of revisions 3

M
M22-SWD-NOP 25
M22-SWD-NOPC 25
M22-SWD-SEL8-10 24
Modbus-TCP 49

P
Parameter .. 51
Planning and configuring hardware 19
Planning and configuring software 19, 47
PLC .. 20
PLC configuration 48
Power feeder module 17, 22, 26, 35
Power supply 22, 72
Powerlink .. 50
Process data information 55
PROFIBUS-DP 49
Profinet ... 49
Project configuration 77

R
Round cable 17

S
SmartWire-DT
 Applications 6
 Components 7
 Network .. 7, 21
 Overview 5
SmartWire-DT cable 71
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status display</td>
<td>79</td>
</tr>
<tr>
<td>Status displays</td>
<td>71</td>
</tr>
<tr>
<td>Status Information</td>
<td>55</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>41</td>
</tr>
<tr>
<td>Surface mounting enclosure</td>
<td>24</td>
</tr>
<tr>
<td>SWD accessories</td>
<td>17</td>
</tr>
<tr>
<td>SWD assist</td>
<td>19, 56</td>
</tr>
<tr>
<td>SWD cables</td>
<td>17</td>
</tr>
<tr>
<td>SWD card</td>
<td>10, 23</td>
</tr>
<tr>
<td>SWD line</td>
<td>7</td>
</tr>
<tr>
<td>SWD network</td>
<td>20</td>
</tr>
<tr>
<td>SWD status displays</td>
<td>74, 86</td>
</tr>
<tr>
<td>SWD4-8FRF-10</td>
<td>69</td>
</tr>
<tr>
<td>SWD4-8MF2</td>
<td>59</td>
</tr>
<tr>
<td>SWD4-8SF2-5</td>
<td>23, 27, 62</td>
</tr>
<tr>
<td>SWD4-8SFF2-5</td>
<td>26</td>
</tr>
<tr>
<td>SWD4-CRP-1</td>
<td>62</td>
</tr>
<tr>
<td>SWD4-CRP2-1</td>
<td>59</td>
</tr>
<tr>
<td>SWD4-RC5-10</td>
<td>27</td>
</tr>
<tr>
<td>SWD4-RC8-10</td>
<td>65</td>
</tr>
<tr>
<td>SWD4-SELB8-10</td>
<td>64</td>
</tr>
<tr>
<td>SWD4-SF8-67</td>
<td>24</td>
</tr>
<tr>
<td>SWD4-SFL8-12</td>
<td>65</td>
</tr>
<tr>
<td>SWD4-SFL8-20</td>
<td>30</td>
</tr>
<tr>
<td>SWD4-SM8-67</td>
<td>24</td>
</tr>
<tr>
<td>SWD4-SML8-12</td>
<td>27</td>
</tr>
<tr>
<td>SWD4-SML8-20</td>
<td>30</td>
</tr>
<tr>
<td>Switch cabinet bushing</td>
<td>30</td>
</tr>
<tr>
<td>T Target configuration</td>
<td>73</td>
</tr>
<tr>
<td>U Universal module</td>
<td>16, 25, 56</td>
</tr>
<tr>
<td>W Wiring test</td>
<td>78, 81</td>
</tr>
</tbody>
</table>